画像情報特論(8)

- アダプテーション (2) パケット廃棄対策

2001.06.05

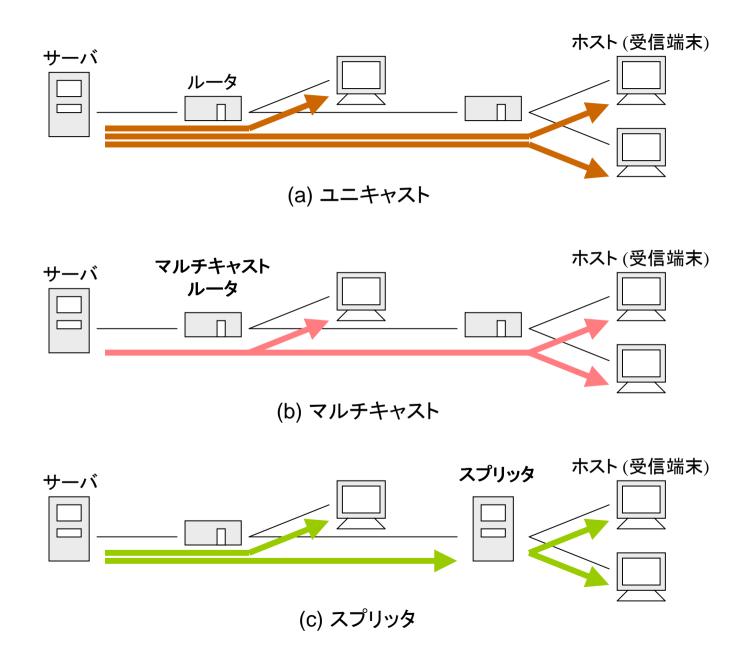
電子情報通信学科 甲藤二郎

E-Mail: katto@katto.comm.waseda.ac.jp

インターネットにおける 放送・通信手段

三通りの放送・通信手段

1. ユニキャスト


送受信端末間の1対1のコネクション。通常のインターネット接続。

2. マルチキャスト

送受信端末間の1対多のコネクション。マルチキャストルーティング。

3. スプリッタ

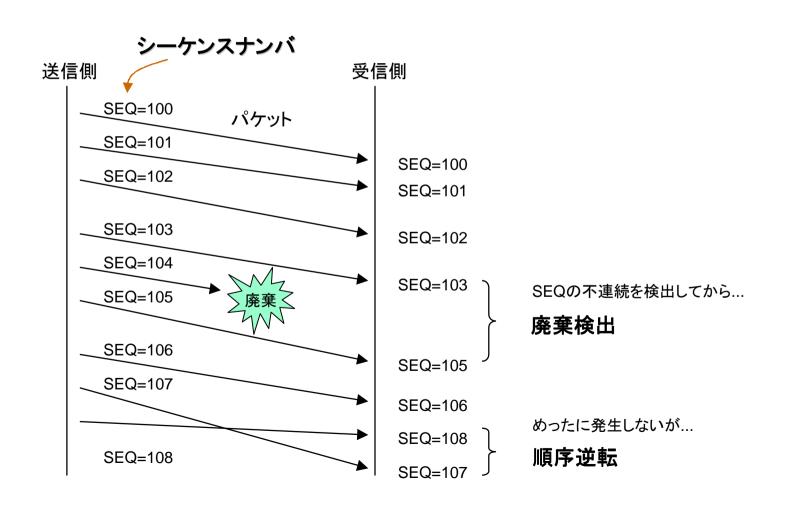
送受信端末間にスプリッタを配置、ユニキャストとマルチキャストの中間。

方式比較

	転送 プロトコル	長所	短所	用途	パケット 廃棄対策
7 - + 471	TCP	杰西不西	トラヒックの 爆発	オンデマンド	不要
ユニキャスト	UDP	変更不要		オンデマンド ライブ、双方向	要
マルチキャスト	IP multicast (UDP)	トラヒックの 最小化	マルチキャスト 対応ルータ	ライブ 双方向	要
 011	TCP	トラヒックの 削減	スプリッタの 新規追加	オンデマンド	不要
スプリッタ	UDP			オンデマンド ライブ	要

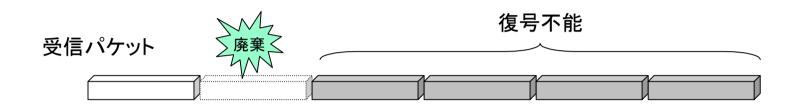
• インターネット放送: ライブとオンデマンド

• インターネット電話: 双方向

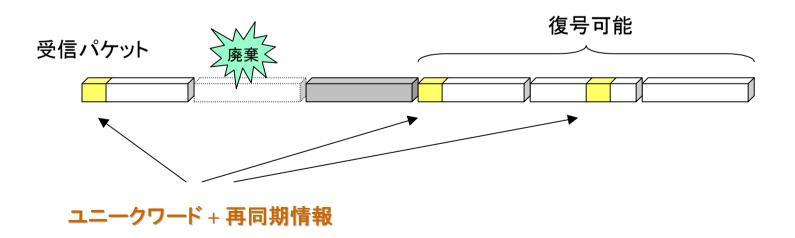

パケット廃棄対策

誤り対策一覧

	電話	移動体	ディジタル放送	インターネット	程度
誤り検出符号	0	0	0	O (TCP/UDP)	検出 (ビット誤り)
シーケンス ナンバ		0	0	O (RTP)	検出 (パケット廃棄)
再同期	Δ	0	0	O (RTP)	局所化
NewPred	Δ	Δ	Δ	△ (検討中)	局所化
誤り訂正符号	Δ	0	0	O (RFC2733)	訂正
インターリーブ		0	0	O (RFC2733)	訂正
再送				△ (検討中)	訂正


シーケンスナンバ

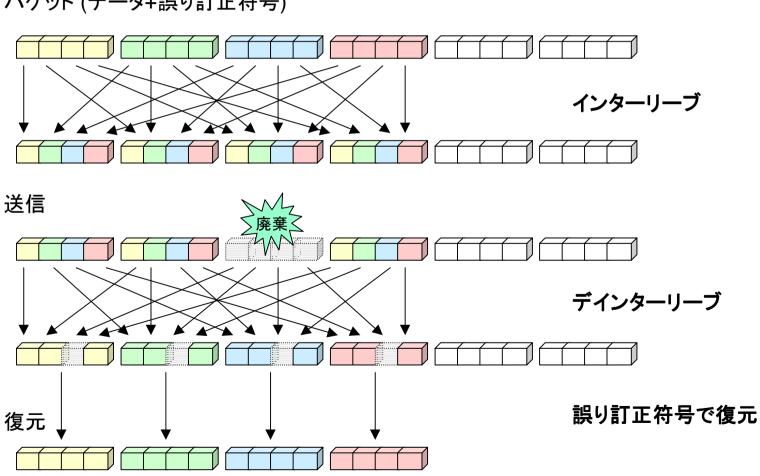
• パケット廃棄の「検出」



再同期

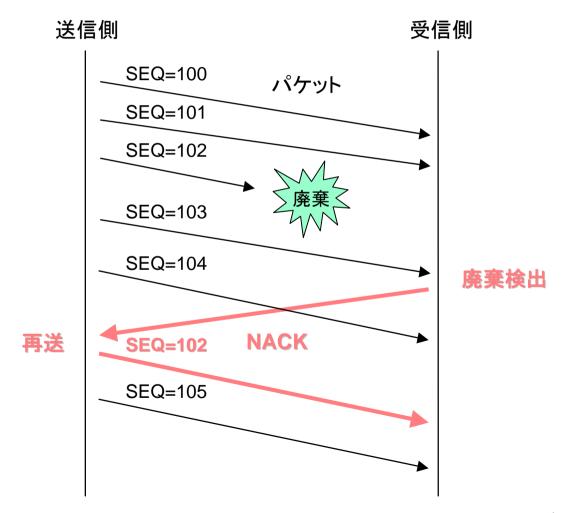
• パケット廃棄の影響の「局所化」

(a) 再同期情報がない場合



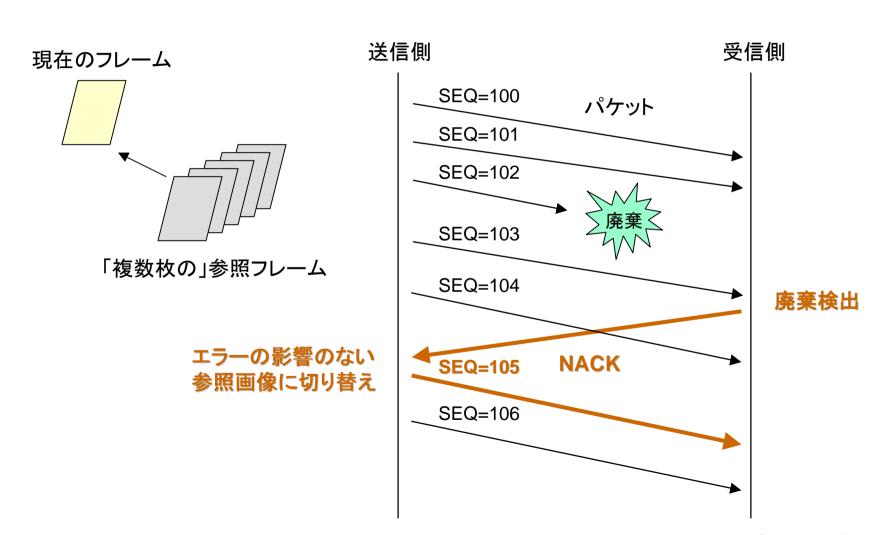
(b) 再同期情報がある場合

インターリーブ + 誤り訂正符号


• パケット廃棄の「訂正」... バースト誤り訂正の応用

パケット (データ+誤り訂正符号)

再送


• NACK と廃棄パケットの「再送」

再送に要する遅延が問題

NewPred

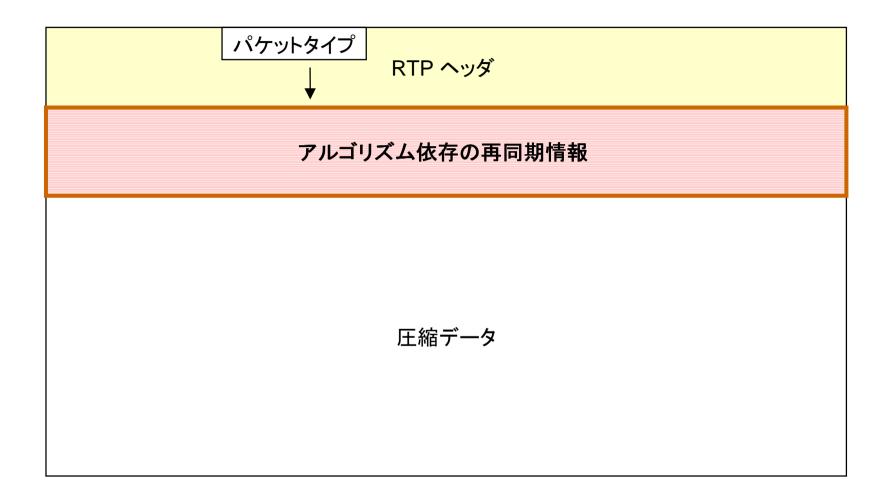
• NACK と「参照フレームの切り替え」

再送遅延は生じない

パケット廃棄対策と RTPペイロードフォーマット

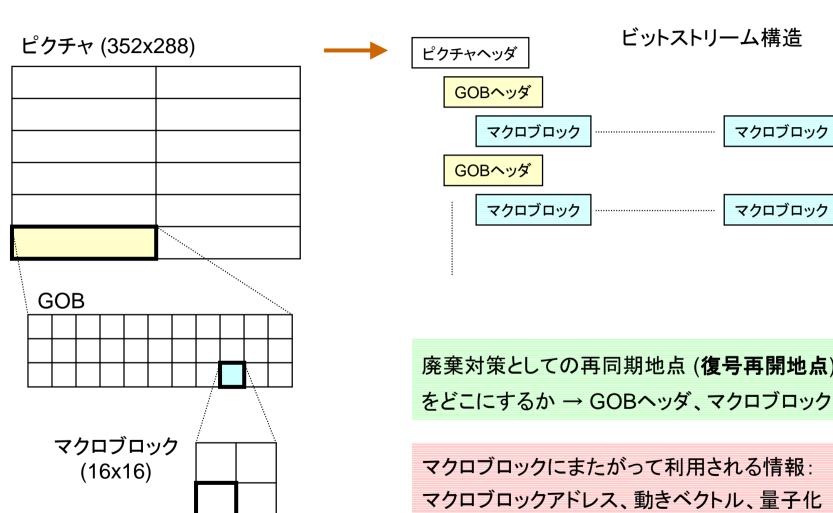
v=2	Р	Х	CSRC カウント	М	パケットタイプ	シーケンスナンバ	
	タイムスタンプ						
	SSRC 識別子						
	CSRC 識別子 (list)						
	(拡張フィールド)						
	(再同期情報+) データ						

パケットタイプ: 転送メディアの符号化アルゴリズム


シーケンスナンバ: パケットの順序逆転、廃棄の検出

タイムスタンプ: 同期再生 (メディア内同期)

Mビット: フレーム境界の通知


SSRC: 送信者の識別

RTPペイロードフォーマット

符号化アルゴリズム毎に、さまざまなペイロードフォーマットが決められている (RFC 化)

H.261 用ペイロードフォーマット (1)

ブロック (8x8)

廃棄対策としての再同期地点 (**復号再開地点**)

マクロブロックにまたがって利用される情報: マクロブロックアドレス、動きベクトル、量子化 ステップサイズ、等々。

→ これらを再同期情報としてコピーする。

マクロブロック

マクロブロック

H.261 用ペイロードフォーマット (2)

RTP ヘッダ:

フレームの最後で、M ビットを 1にセット。 タイムスタンプの解像度は 90kHz。

H.261ヘッダ (4バイト):

SBIT EBIT I	V GOBN	MBAP	QUANT	HMVD	VMVD
-------------	--------	------	-------	------	------

SBIt, EBIT: 先頭、最終バイトの有効ビットの位置 (H.261ではバイトアラインが 行われないため)。

1: イントラフレーム or インターフレーム。

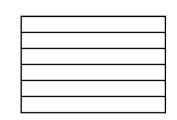
V: 動きベクトルが使われている or 使われていない。

GOBN: パケットの先頭のマクロブロックのGOB番号。

MBAP: パケットの先頭のマクロブロックのマクロブロックアドレス。

QUANT: パケットの直前で有効だった量子化ステップサイズ。

HMVD, VMVD: パケットの先頭のマクロブロックの動きベクトル。


再同期情報

圧縮データのフラグメンテーション:

GOBヘッダ、あるいはマクロブロックを先頭バイトに配置。

H.263 用ペイロードフォーマット (1)

H.261の機能拡張 (半画素動き検出、GOBのライン化、ほか)

H.263 特有の機能 (オプション):

ベクトル探索範囲の拡大 (Annex D):

算術符号化 (Annex E): ハフマン符号化の代替オプション。

アドバンス予測 (Annex F): 8x8ブロック単位の動き補償、オーバーラップ動き補償。

PB フレーム (Annex G): Bピクチャの簡易版。

H.263 用ペイロードフォーマット:

Mode A: GOB、もしくはピクチャ境界にアライン。

Mode B: PB フレームオプションは使わず、マクロブロック境界にアライン。

Mode C: PB フレームオプションを使用し、マクロブロック境界にアライン。

Mode A の利用が推奨。

H.263 用ペイロードフォーマット (2)

H.263 ヘッダ Mode A (4バイト): GOB 単位

F P SBIT EBIT SRC I U S A reserved DBQ TRB TR

F: 0 の場合 mode A、1 の場合 mode B/C。

P: 0 の場合、通常の I/P フレーム、1 の場合 PB フレーム。

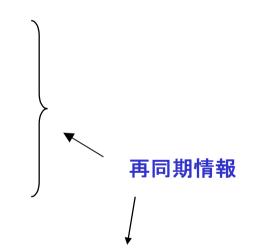
SRC: ピクチャ解像度。

U: 動きベクトルの探索範囲拡大オプションの on/off。

S: 算術符号化オプションの on/off。

A: アドバンス予測オプションの on/off。

DBQ: PB フレームオプションの差分量子化パラメータ。


TRB、TR: PBフレームオプションのテンポラルリファレンス。

Mode B (8バイト): マクロブロック単位、PB オプションなし

GOB番号、量子化ステップサイズ、マクロブロックアドレス、動きベクトルの複製。 差分量子化パラメータ、テンポラルリファレンスの削除。

Mode C (12バイト): マクロブロック単位、PB オプションあり

Mode A & B に使用されるすべてのフィールドから構成。

H.263+ 用ペイロードフォーマット (1)

H.263の機能拡張

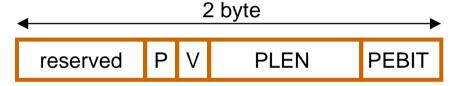
インターネット用途に有効な H.263+ の拡張機能:

- スライス構造 (Annex K): GOB の代替。固定されたGOBとは異なり、スライス幅を動的に変更可能、スライススタートコードでバイトアラインされる。
- 独立セグメント復号 (Annex R): セグメント (GOB /スライス) 単位で独立して復号可能。 動きベクトルの探索範囲はセグメント内に限定。
- <u>スケーラビリティ</u> (Annex O): Temporal, SNR & spatial scalability。時間解像度と空間 解像度の階層化、SNR エンハンスメント。
- <u>参照ピクチャ選択モード</u> (Annex N):参照ピクチャの動的切り替え。エラー通知によるリカバリ。

ペイロードフォーマットの工夫 (H.261/H.263 用とはかなり違う):

ヘッダの簡素化。

ピクチャヘッダの複製の挿入。


スケーラビリティは、個々の階層を独立したストリームとしてパケット化。

H.263+ 用ペイロードフォーマット (2)

RTP ヘッダ:

フレームの最後で、M ビットを 1にセット。 タイムスタンプの解像度は 90kHz。

H.263+ヘッダ

P: スタートコード (ピクチャ、GOB、スライス) から始まる場合、1にセット。

V: ビデオ冗長符号化が使われる場合、1にセット。

PLEN: ピクチャヘッダが挿入されている場合、その長さ(バイト単位)。

PEBIT: ピクチャヘッダの最後のバイトで無視されるビット数。

再同期情報

圧縮データのフラグメンテーション:

制約無し (Pビットで識別)。

P=0 の場合で前パケットが廃棄された場合、受信パケット中のスタートコードをサーチし、それを再同期ポイントとする。

MPEG-4 用ペイロードフォーマット (1)

MPEG-4 Video の機能と H.263 との対比:

再同期マーカ: 17ビットの再同期マーカを先頭に、マクロブロック群の固まりを構成 (ビデオパケット)。

→ H.263+ のスライス構造。

ピクチャヘッダのコピー: フラグに応じて、ビデオパケット単位にピクチャヘッダ (VOP ヘッダ) を複製。

→ H.263+ペイロードフォーマットのピクチャヘッダ複製機能。

データパーティショニング: マクロブロック情報を動きベクトルとテクスチャ情報に分け、 モーションマーカ (17ビット) を挿入して分離。

→ H.263++ で採用。

リバーシブルVLC: DCT係数のハフマン符号で、両方向から復号可能な VLC。

→ インタネットではあまり大きな意味を持たない。

スケーラビリティ: H.263+ と同様。

形状符号化: JBIG 拡張としてのオブジェクト形状の符号化。

→ MPEG-4 独自。廃棄対策は、再同期情報の挿入。

MPEG-4 用ペイロードフォーマット (2)

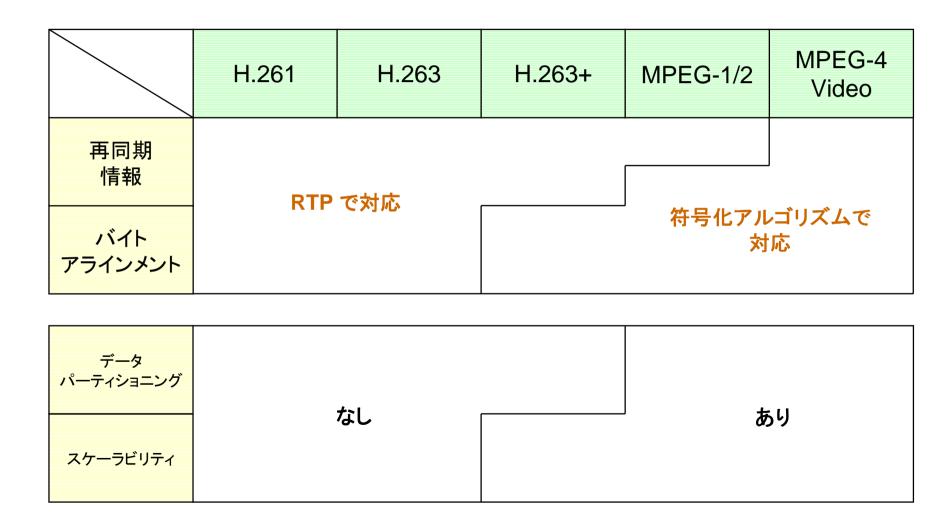
RTP ヘッダ:

フレーム (VOP) の最後で、M ビットを 1にセットする。

MPEG-4 Video 用ヘッダ

なし。

圧縮データのフラグメンテーション:


構成情報とGOV はペイロードの先頭に来なければならない

RTP	VS	VO	VOL
ヘッダ	ヘッダ	ヘッダ	ヘッダ

RTP	VS	VO	VOL	ビデオパケット
ヘッダ	ヘッダ	ヘッダ	ヘッダ	

RTP ヘッダ GOV	ビデオパケット
----------------	---------

どこで再同期情報を運ぶか?

