画像情報特論 (2) Advanced Image Information (2)

Streaming & TCP Variants

情報理工学専攻 甲藤二郎 E-Mail: katto@waseda.jp

Background

History of Streaming

(Old) Protocol Stack for Video Streaming

VoIP, IPTV and streaming shares almost common protocol stack

application (L7)	video (H.264 etc)	audio	SDP	layout (HTML. SMIL)
adaptation	RTP / RTCP		RTSP, SIP, SAP*	НТТР
transport (L4)	UDP / TCP / DCCP		TCP / UDP / SCTP	
network (L3)	IP (IPv4, IPv6, IP-multicast)			
datalink & physical (L2 & L1)	actual networks (802.3 (ethernet), 802.11 (WiFi), etc)			

* SAP: delivered by IP-multicast for program advertisement

Protocol Stack for HTTP Video Streaming

VoIP, IPTV and streaming shares almost common protocol stack

application (L7)	video (H.264 etc)	audio	MPD (MPEG-DASH)	layout (HTML)
adaptation	НТТР			
transport (L4)	ТСР			
network (L3)	IP (IPv4, IPv6)			
datalink & physical (L2 & L1)	actual networks (802.3 (ethernet), 802.11 (WiFi), etc)			

Networks and Multimedia

Wired Networks

RTP/UDP & RTSP & TFRC

 \rightarrow <u>HTTP/TCP streaming</u>

- Broadband
- CDN (Akamai, Lime Networks)
- Firewall (port 80)

• ...

One-way (on-demand / live) Bi-directional (interactive)

Wireless Networks

Wireless specific problems

- Wireless LAN: IEEE 802.11
- Cellular: 3G, LTE, 4G
- WiMAX: IEEE 802.16
- Home Networks: DLNA
- (Satellite)
- ...
- <u>Wireless issues</u>

random errors, collisions,

interference, delay increase

• <u>Multi-hop issues</u>

severe interference, lower throughput and higher delay

Protocol Transition

Overview

- TCP
- TFRC
- CDN & P2P
- · MPEG-DASH
- WebRTC

TCP Variants

TCP-Reno (loss-based)

AIMD: additive increase multiplicative decrease

TCP problems ten years ago

- broadband wired networks
 - slow window increase (inefficiency)
- deployment of wireless networks
 - cannot distinguish wireless errors and buffer overflow
- TCP-Reno (NewReno, SACK) problem
 Reno expels Vegas (<u>unfriendliness</u>)

TCP Variants in the 21th century

- Loss-driven (AIMD)
 - TCP-Reno / NewReno / SACK
 - High-Speed TCP (IETF RFC 3649, Dec 2003)
 - Scalable TCP (PFLDnet 2003)
 - BIC-TCP / CUBIC-TCP (IEEE INFOCOM 2004, PFLDnet 2005) ... Linux
 - H-TCP (PFLDnet 2004)
 - TCP-Westwood (ACM MOBICOM 2001)
- Delay-driven (RTT Observation)
 - TCP-Vegas (IEEE JSAC, Oct 1995)
 - FAST-TCP (INFOCOM 2004)
- Hybrid
 - Gentle High-Speed TCP (PfHSN 2003)
 - TCP-Africa (IEEE INFOCOM 2005)
 - Compound TCP (PFLDnet 2006) ... Windows
 - Adaptive Reno (PFLDnet 2006)
 - YeAH-TCP (PFLDnet 2007)
 - TCP-Fusion (PFLDnet 2007)

Loss-based TCPs

		a	b
	Variants	Increase / Update	Decrease
	TCP-Reno	1	0.5
	HighSpeed TCP (HS-TCP)	$a(w) = \frac{2w^2 \cdot b(w) \cdot p(w)}{2 - b(w)}$	$b(w) = \frac{\log(w) - \log(W_{low})}{\log(W_{high}) - \log(W_{low})} (b_{high} - 0.5) + 0.5$
uggi essive		e.g. 70 (10Gbps, 100ms)	e.g. 0.1 (10Gbps, 100ms)
	Scalable TCP (STCP)	0.01 (per every ACK)	0.875
	BIC-TCP	{ additive increase (fast) { binary search (slow) max probing (fast)	0.875
adaptive -	CUBIC-TCP	$w = 0.4(t - \sqrt[3]{2W_{\text{max}}})^3 + W_{\text{max}}$	0.8
	H-TCP	$\alpha \leftarrow 2(1-\beta)\{1+10.5 \cdot (t-TH)\}$	$\beta \leftarrow \begin{cases} 0.5 & \text{for } \left \frac{B(k+1) - B(k)}{B(k)} \right > 2 \\ \frac{RTT_{\min}}{RTT_{\max}} & \text{otherwise} \end{cases}$
	TCP-Westwood (TCPW)	1	$\begin{cases} RE * RTT_{min} / PS & (not \ congested) \\ BE * RTT_{min} / PS & (congested) \end{cases}$

Delay-based TCPs

	a	b
Variants	Update	Decrease
TCP-Vegas	$w \leftarrow \begin{cases} w+1 & (no \ congestion) \\ w & (stable) \\ w-1 & (early \ congestion) \end{cases}$	0.75
FAST-TCP	$w \leftarrow \min\left\{2w, (1-\gamma)w + \gamma\left(\frac{RTT_{\min}}{RTT}w + \alpha\right)\right\}$	0.5 (?)

Hybrid TCP

- RTT increase: loss mode \Rightarrow improvement of friendliness
- no RTT increase: delay mode \Rightarrow improvement of efficiency

Hybrid TCPs

		a	b
	Variants	Increase	Decrease
simple -	Gentle HS-TCP	HS-TCP / Reno	HS-TCP
Simple	TCP-Africa	HS-TCP / Reno	HS-TCP
ſ	Compound TCP (CTCP)	$0.125 \cdot cwnd^{0.75}$ / Reno	0.5
	Adaptive Reno (ARENO)	B/10Mbps / Reno	$\begin{cases} 1 & (non \ congestion \ loss) \\ 0.5 & (congestion \ loss) \end{cases}$
adaptive-	YeAH-TCP	STCP / Reno	$\max\left(\frac{RTT_{\min}}{RTT}, 0.5\right)$
	TCP-Fusion	$\frac{B*D_{\min}}{PS}$ / Reno	$\max\left(\frac{RTT_{\min}}{RTT}, 0.5\right)$

CUBIC-TCP

BIC-TCP(1)

Binary Increase Congestion Control

L.Xu et al: "Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks," IEEE INFOCOM 2004.

BIC-TCP(2)

L.Xu et al: "Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks," IEEE INFOCOM 2004.

*0.9: give bandwidth to newly-coming flows ... "Fast Convergence"

L.Xu et al: "Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks," IEEE INFOCOM 2004.

CUBIC-TCP(1)

Cubic approximation of BIC-TCP

S.Ha et al: "CUBIC: A New TCP Friendly HighSpeed TCP Variant", ACM SIGOPS Review, 2008.

CUBIC-TCP(2)

S.Ha et al: "CUBIC: A New TCP Friendly HighSpeed TCP Variant", ACM SIGOPS Review, 2008.

CUBIC-TCP(3)

CUBIC's cwnd behavior

S.Ha et al: "CUBIC: A New TCP Friendly HighSpeed TCP Variant", ACM SIGOPS Review, 2008.

CUBIC-TCP (4)

- Advantages
 - stability
 - "intra-protocol fairness" among multiple CUBIC flows
- Disadvantages
 - heavy buffer occupancy and delay increase (\$\emplosed\$)
 - "inter-protocol unfairness" against other TCP flows
 - "Linux beats Windows!" (vs. Compound TCP)

Hybrid TCPs

Hybrid TCP (1)

adaptive switching of two modes (loss & delay):

 constant rate until RTT increases (delay mode) : "efficiency" and "low delay"

2 performs as Reno when RTT increases (loss mode) : "friendliness"

Hybrid TCP (2)

adaptive switching of two modes (loss & delay):

- 1) fast cwnd increase (delay ... "efficiency")
- 2 mild cwnd decrease (delay ... congestion avoidance)
- ③ performs as Reno when RTT increases (loss ... "friendliness")

Min-Max Fair (ideal case)

Min-Max-Fair: allocate "maximum bandwidth" to a user who has
 "minimum bandwidth"

D.Bertsekas and R.Gallager: "Data Networks," Prentice Hall.

TCP Reno

TCP behavior model (1)

- model definition
 - Loss-mode (TCP-Reno):
 - cwnd += 1 (per "RTT round")
 - cwnd *= 1/2 (when a packet loss is detected)
 - Delay-mode :
 - fill a "pipe" (fully utilize a link) without causing RTT increase
 - Hybrid :
 - $\boldsymbol{\cdot}$ works in delay mode when RTT is not increased
 - works in loss mode when RTT is increases (i.e. when packets are buffered)
 - mode selection: cwnd = max(cwnd_{loss}, cwnd_{delay})

TCP behavior model (2)

- parameter definition
 - w: cwnd when a packet loss is detected
 - W: cwnd which just fills a pipe ~ BDP
 - *p* : packet loss rate
- assumption
 - packet loss due to buffer overflow is equivalent to packet loss due to random error

$$p = \frac{8}{3w^2}$$
 (in case of TCP-Reno)

TCP behavior model (3)

w: cwnd when a packet loss is detected p: packet loss rate RTT: round trip time

R: TCP equivalent rate

of transmitted packets until a packet loss is detected

= area of a trapezoid

$$\frac{1}{2} \cdot \left(\frac{w}{2} + w\right) \cdot \frac{w}{2} = \frac{3w^2}{8}$$

$$\begin{cases} p = \frac{8}{3w^2} \\ R = \frac{PS}{RTT} \cdot \sqrt{\frac{3}{2p}} \end{cases}$$

TCP behavior model (4)

single flow

TCP behavior model (5)

(always loss-mode)

 $(delay \leftrightarrow loss)$

(always delay-mode)

TCP behavior model (6)

formulation

ТСР	CA round	(i) $W < w/2$	(ii) $w/2 \leq W < w$	(iii) $w \leq W$
Loss	transmitted	$\frac{3}{8}w^2$	$\frac{3}{8}w^2$	$\frac{3}{8}w^2$
	elapsed time	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{8}(3w^2 - 4wW) \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min} + \frac{1}{2} (w - W)^2 \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min}$
Delay	transmitted packets	$\frac{1}{2} w \cdot W$	$\frac{1}{2} w \cdot W$	$\frac{1}{2} w \cdot W$
	elapsed time	$\frac{1}{2} w \cdot RTT_{\min}$	$\frac{1}{2} w \cdot RTT_{\min}$	$\frac{1}{2} w \cdot RTT_{\min}$
Hybrid	transmitted packets	$\frac{3}{8}w^2$	$\frac{1}{2}w\cdot W + \frac{1}{2}(w-W)^2$	$\frac{1}{2} w \cdot W$
	elapsed time	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{8}(3w^2 - 4wW) \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min} + \frac{1}{2} (w - W)^2 \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min}$

PS: Packet size, B: Link bandwidth

TCP behavior model (7)

abstraction of actual hybrids

Hybrids	Window increase	Window decrease
Compound TCP	0.125*cwnd ^{0.75}	1/2
ARENO	B/10Mbps	1/2~1
YeAH-TCP	Scalable TCP (1.01)	1/2, RTT _{min} /RTT, 7/8
TCP-Fusion	B*D _{min} /(N*PS)	RTT _{min} /RTT

 D_{min} : timer resolution, N: # of flows

TCP behavior model (8)

evaluation by models and simulations

buffer size = BDP (constant) Packet loss rate : variable

when PLR is large (w/2<W), throughputs of delay & hybrid are much larger than that of loss-mode (i.e. efficiency)

degradation of Compound & YeAH is due to fixed window decrease

TCP behavior model (9)

two flows (competing)

TCP behavior model (10)

TCP behavior model (11)

formulation

ТСР	CA round	(i) $W < w$	(ii) $w \leq W < 2w$	(iii) $2w \leq W$
Loss	transmitted	3_{w^2}	$\frac{3}{2}w^{2}$	3_{111}^{2}
	packets	8 "	8 ^{<i>w</i>}	8 <i>n</i>
Hybrid	transmitted	$3_{\rm w^2}$	$3w^2 + 1(W - w)^2$	$\frac{1}{1} w \cdot W = \frac{3}{2} w^2$
	packets	8 <i>w</i>	$\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}$	$\frac{1}{2}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$
(common)	elapsed time	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{4}w(3w - 2W) \cdot \frac{PS}{B}$	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{4}(2w - W)^2 \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min}$

PS: Packet size, B: Link bandwidth

TCP behavior model (12)

evaluation by models and simulations

throughput

buffer size = BDP (constant) Packet loss rate : variable

when PLR is large (w<W), throughputs of delay & hybrid are much larger than that of loss-mode (efficiency)

when PLR is low (w>W), hybrid behaves similar to loss-mode (<u>friendliness</u>)

TCP behavior model (13)

- Advantages of Hybrid TCP
 - when vacant capacity exists (or PLR is large), throughput efficiency is greatly improved (advantage of delay-mode)
 - when no vacant capacity exists (or buffer size is large), friendliness to legacy TCP (i.e. Reno) is achieved (advantage of loss-mode)
- Disadvantages of Hybrid TCP
 - when buffer size is large, delay-mode is never activated ...

Summary of Hybrid TCP

- "Efficiency", "Friendliness" and "Low delay"
 - can be applied to real-time streaming and large file download
 - might be effective in wireless networks
 - friendliness to CUBIC-TCP or Compound-TCP
 - CUBIC-TCP: Linux default
 - Compound-TCP: Windows
 - other metrics
 - RTT fairness, mice/elephant (short-lived or longlived), convergence speed, etc...
 - efficiency is brought by delay-mode

TCP over Wireless

Wireless issues

- error control (L1)
 - BER (bit error rate), PER (packet error rate)
 - error model: AWGN, Two-States Markov
- access control (L2)
 - CSMA/CA (MACA, MACAW):
 - interference, collision
 - hidden terminal, exposed terminal
 - grey zone: receive range & carrier sense range
 - TDMA, FDMA, CDMA
- ad-hoc routing (L3)
 - DSDV, DSR, AODV, OLSR, TORA, AOMDV, ...
- transport protocol (L4)
 - Wireless TCP/TFRC, multi-hop TCP/TFRC
- mobility management (L3 / L7)
 - mobility model: Random Waypoint, Random Trip
 - handover
- energy consumption (all layers)
 - energy model

Discussion

- Wireless LAN
 - CSMA/CA, half-duplex, interferences, random errors, ...
 - cannot send packets when the sender wants to
 - packets are continuously stored into a transmission buffer of the sender
 - NIC buffer size is very large
 - Hybrid TCP always operates in the loss mode only
 - Unfairness between upload and download
 - D.Leith: WiOpt 2005

TCP over Wireless Networks (1) TCP Differentiation

WiFi Example

 RTT instability and unfairness between upload and download

K.Kanai et al: "Performance evaluations of adaptive rate control mechanisms ...", IEICE Tech. Report, 2011.

Wireless LAN (1)

% ns-2 simulation

TCPs and throughputs

K.Sonoda et al: "TCP Differentiation using Version Identification...", IEEE CCNC 2013.

Wireless LAN (2)

TCPs and delays

Reno, Fusion: though unfairness was alleviated, delay increases (esp. upload) Vegas & Proposal: unfairness and delay are decreased (compare vertical axis)

 \rightarrow Hybrid TCP works in loss mode only

K.Sonoda et al: "TCP Differentiation using Version Identification...", IEEE CCNC 2013.

Wireless LAN (3)

- Common to wired
 - Delay based TCP design is effective if we require low delay transmission (but, it is expelled by loss based flows)
- Differences to wired
 - Hybrid does not operate in "hybrid" (delay mode) due to huge transmission buffer
 - Too many packet insertion causes huge delay due to multiple access mechanism (i.e. CSMA)

Critical throughput-delay tradeoff due to CSMA/CA

TCP Version Differentiation (1)

- TCP version identification and differentiation
- 1. Access points identify TCP versions using RTT/cwnd estimation
- 2. Access points separate different TCP versions into different buffers
- 3. Prioritize delay based TCP flows by tuning CSMA/CA parameters of IEEE 802.11e

TCP Version Differentiation (2)

- RTT estimation for delay based flow
 - When cwnd increases by one, two consecutive packets are transmitted
 - When cwnd decreases by one, no packets are transmitted for the last ACK
- cwnd estimation
 - Access points let the number of arrived packets per RTT be "cwnd"

TCP Version Differentiation (3)

K.Sonoda et al: "TCP Differentiation using Version Identification...", IEEE CCNC 2013.

TCP over Wireless Networks (2) Multi-hop

Wireless Multihop Networks

- ad-hoc network
- sensor network

Wireless Multihop Networks (1)

Single Radio Multi-hop Transmission

Multihop Capacity (1)

J.Li et al: "Capacity of Wireless Ad Hoc Networks", ACM Mobicom 2001.

Multihop Capacity (2)

J.Li et al: "Capacity of Wireless Ad Hoc Networks", ACM Mobicom 2001.

Link RED & Adaptive Pacing

- Wireless capacity is limited by # of hops (1/4 is the theoretical maximum channel efficiency for chain topology)
- Distributed Link RED: drops packets randomly at the link level when link load increases (analogous to random early detection)
- Adaptive Pacing: controls packet transmission scheduling in order to approach 1/4 (spatial channel reuse)

	TCP NewReno	LRED+
flow 1	244 Kbps	166 Kbps
flow 2	0 Kbps	153 Kbps
Aggregate	244 Kbps	319 Kbps
Fairness	0.5	0.9983

	TCP NewReno w/standard LL	TCP NewReno w/LL+LRED+PACING
flow 1	532 Kbps	85512 Kbps
flow 2	126229 Kbps	90459 Kbps
flow 3	115554 Kbps	70334 Kbps
flow 4	1608 Kbps	47946 Kbps
Aggregate	242923	294251
Fairness	0.51	0.95

Vegas-W(1)

for wireless multihop

- Vegas-W [Ding, C&C 2008]
 - Slower window increase than TCP-Vegas

$$cwnd = \begin{cases} cwnd + 1 / cwnd & (\Delta < \alpha \& n_{CA} > N_{CA}) \\ cwnd & (\alpha \le \Delta \le \beta \text{ or } \Delta \le \alpha \& n_{CA} \le N_{CA}) \\ cwnd - 1 / cwnd & (\Delta > \beta) \end{cases}$$

 $\begin{array}{l} \mathsf{n}_{CA}: \mbox{ \# of consecutive states entering into} \\ (\alpha \leq \Delta \leq \beta \mbox{ or } \Delta \leq \alpha \ \& \ n_{CA} \leq N_{CA}) \\ \mathsf{N}_{CA}: \mbox{ threshold (e.g. 100)} \end{array}$

much slower than TCP-Vegas

Vegas-W(2)

FeW: Fractional Window Increment (ACM Mobihoc 2005)

Vegas degraded as # of flows increases

Vegas-W improves as # of flows increases

L.Ding et al.: "Improve throughput of TCP-Vegas in multihop ad hoc networks", Computer Communications, Jun.2008.

Summary of Wireless Multihop Networks

- Common to wired & wireless LAN
 - delay-based TCP is effective as long as no competing loss-based flows exist
- Gap to the wired case
 - wired case: faster window increase
 "immediately" fills a pipe
 - multi-hop case: slower window increase
 "safely" fills a pipe

(ref.) Wireless Network Coding

S.Zhang: "Physical-Layer Network Coding", ACM Mobicom 2006.