画像情報特論 (4) Advanced Image Information (4)

TCP over Wireless

情報理工学専攻 甲藤二郎 E-Mail: katto@waseda.jp

TCP over Wireless

Wireless issues

- error control (L1)
 - BER (bit error rate), PER (packet error rate)
 - error model: AWGN, Two-States Markov
- access control (L2)
 - CSMA/CA (MACA, MACAW):
 - interference, collision
 - hidden terminal, exposed terminal
 - grey zone: receive range & carrier sense range
 - TDMA, FDMA, CDMA
- ad-hoc routing (L3)
 - DSDV, DSR, AODV, OLSR, TORA, AOMDV, ...
- transport protocol (L4)
 - Wireless TCP/TFRC, multi-hop TCP/TFRC
- mobility management (L3 / L7)
 - Mobile IP (L3), SIP mobility (L7)
- energy consumption (all layers)
 - energy model

Discussion

- Wireless LAN
 - CSMA/CA, half-duplex, interferences, random errors, ...
 - cannot send packets when the sender wants to
 - packets are continuously stored into a transmission buffer of the sender
 - NIC buffer size is very large
 - Hybrid TCP always operates in the loss mode only
 - Unfairness between upload and download
 - D.Leith: WiOpt 2005

TCP over Wireless (1) Error Management

Summary

- TCP Extensions for Mobile Networks
 - Split Connection: Indirect TCP
 - Proxy: Snoop TCP
 - End-to-End: Freeze TCP
- L2/L4 collaboration (practical)

TCP over Mobile Networks

(1) Split Connection

Transmission errors over wireless links are not propagated to wired networks

Forces heavy load on a base station

Breaks end-to-end semantics

end-to-end TCP

Local retransmission over wireless links avoids initiation of unnecessary congestion avoidance

Forces heavy load on a base station

(3) Freeze TCP

Does not need any base station support

Only TCP of mobile nodes should be modified

A mobile node has to predict a link break precisely before the actual break happens

ZWA: Zero Window Advertisement

(4) L2/L4 Collaboration

Packet losses of wireless links are retransmitted by L2 protocols (e.g. IEEE 802.11, 3G/LTE)

Default retransmission count depends on products: Cisco AP: 32, Buffalo: 4, or adaptive decision

L2 retransmission generally increases latency due to its backoff mechanism

TCP over Wireless Networks (2) TCP Differentiation

WiFi Example

 RTT instability and unfairness between upload and download

K.Kanai et al: "Performance evaluations of adaptive rate control mechanisms ...", IEICE Tech. Report, 2011.

Wireless LAN (1)

% ns-2 simulation

TCPs and throughputs

K.Sonoda et al: "TCP Differentiation using Version Identification...", IEEE CCNC 2013.

Wireless LAN (2)

TCPs and delays

Reno, Fusion: though unfairness was alleviated, delay increases (esp. upload) Vegas & Proposal: unfairness and delay are decreased (compare vertical axis)

 \rightarrow Hybrid TCP works in loss mode only

K.Sonoda et al: "TCP Differentiation using Version Identification...", IEEE CCNC 2013.

Wireless LAN (3)

- Common to wired
 - Delay based TCP design is effective if we require low delay transmission (but, it is expelled by loss based flows)
- Differences to wired
 - Hybrid does not operate in "hybrid" (delay mode) due to huge transmission buffer
 - Too many packet insertion causes huge delay due to multiple access mechanism (i.e. CSMA)

Critical throughput-delay tradeoff due to CSMA/CA

TCP Version Differentiation (1)

- TCP version identification and differentiation
- 1. Access points identify TCP versions using RTT/cwnd estimation
- 2. Access points separate different TCP versions into different buffers
- 3. Prioritize delay based TCP flows by tuning CSMA/CA parameters of IEEE 802.11e

TCP Version Differentiation (2)

- RTT estimation for delay based flow
 - When cwnd increases by one, two consecutive packets are transmitted
 - When cwnd decreases by one, no packets are transmitted for the last ACK
- cwnd estimation
 - Access points let the number of arrived packets per RTT be "cwnd"

TCP Version Differentiation (3)

K.Sonoda et al: "TCP Differentiation using Version Identification...", IEEE CCNC 2013.

TCP over Wireless Networks (3) Multi-hop

Wireless Multihop Networks

- ad-hoc network
- sensor network

Wireless Multihop Networks (1)

Single Radio Multi-hop Transmission

Multihop Capacity (1)

J.Li et al: "Capacity of Wireless Ad Hoc Networks", ACM Mobicom 2001.

Multihop Capacity (2)

J.Li et al: "Capacity of Wireless Ad Hoc Networks", ACM Mobicom 2001.

Link RED & Adaptive Pacing

- Wireless capacity is limited by # of hops (1/4 is the theoretical maximum channel efficiency for chain topology)
- Distributed Link RED: drops packets randomly at the link level when link load increases (analogous to random early detection)
- Adaptive Pacing: controls packet transmission scheduling in order to approach 1/4 (spatial channel reuse)

	TCP NewReno	LRED+
flow 1	244 Kbps	166 Kbps
flow 2	0 Kbps	153 Kbps
Aggregate	244 Kbps	319 Kbps
Fairness	0.5	0.9983

	TCP NewReno w/standard LL	TCP NewReno w/LL+LRED+PACING
flow 1	532 Kbps	85512 Kbps
flow 2	126229 Kbps	90459 Kbps
flow 3	115554 Kbps	70334 Kbps
flow 4	1608 Kbps	47946 Kbps
Aggregate	242923	294251
Fairness	0.51	0.95

Vegas-W(1)

for wireless multihop

- Vegas-W [Ding, C&C 2008]
 - Slower window increase than TCP-Vegas

$$cwnd = \begin{cases} cwnd + 1 / cwnd & (\Delta < \alpha \& n_{CA} > N_{CA}) \\ cwnd & (\alpha \le \Delta \le \beta \text{ or } \Delta \le \alpha \& n_{CA} \le N_{CA}) \\ cwnd - 1 / cwnd & (\Delta > \beta) \end{cases}$$

 $\begin{array}{l} \mathsf{n}_{CA}: \mbox{ \# of consecutive states entering into} \\ (\alpha \leq \Delta \leq \beta \mbox{ or } \Delta \leq \alpha \ \& \ n_{CA} \leq N_{CA}) \\ \mathsf{N}_{CA}: \mbox{ threshold (e.g. 100)} \end{array}$

much slower than TCP-Vegas

Vegas-W(2)

FeW: Fractional Window Increment (ACM Mobihoc 2005)

Vegas degraded as # of flows increases

Vegas-W improves as # of flows increases

L.Ding et al.: "Improve throughput of TCP-Vegas in multihop ad hoc networks", Computer Communications, Jun.2008.

Summary of Wireless Multihop Networks

- Common to wired & wireless LAN
 - delay-based TCP is effective as long as no competing loss-based flows exist
- Gap to the wired case
 - wired case: faster window increase
 "immediately" fills a pipe
 - multi-hop case: slower window increase
 "safely" fills a pipe

(ref.) Wireless Network Coding

S.Zhang: "Physical-Layer Network Coding", ACM Mobicom 2006.