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ABSTRACT 
The purpose of this study is to maintain efficient backup routes 
for reconstructing overlay trees quickly. In most conventional 
methods, after a node leaves the trees, its children start searching 
for a new parent. In this reactive approach, it takes a lot of time to 
find a new parent. In this paper, we propose a proactive approach 
to finding a new parent over the overlay trees before the current 
parent leaves. A proactive approach allows a node to find its new 
parent immediately and switch to the backup route smoothly. In 
our proposal, the structure of the overlay tree using a redundant 
degree can decide a new parent without so much overhead. 
Simulations demonstrate our proactive approach can recover from 
node departures 2 times faster than reactive approaches, and can 
construct overlay trees with lower overheads than another 
proactive method. Additionally we carried out experiments over 
actual networks and their results support the effectiveness of our 
approach. We confirmed that our proposal achieved better 
streaming quality than conventional approaches.  

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design; C.2.4 [Computer-Communication 
Networks]: Distributed Systems 

General Terms 

Design, Experimentation, Performance 

Keywords 
Application Layer Multicast, Redundant Overlay Tree, P2P 
Streaming, Proactive Route Maintenance 

1. INTRODUCTION 
ALM (Application Layer Multicast) implements the multicast 
functionally at end-hosts. Different from IP multicasting, which 
unrealistically needs global deployment of routers with IP 
multicasting capability, ALM needs only installation of 

application software and requires no change in the current 
network infrastructure. In addition, it provides flexibility in 
routing such as multipath packet transfer and load balancing.  
The most active research area in ALM is design of routing 
protocols [2]-[16]. There are several measures to evaluate the 
effectiveness of the routing protocols as the following: (a) quality 
of the data delivery path, that is measured by stress, stretch and 
node degree parameters of overlay multicast tree, (b) robustness 
of the overlay, that is measured by the recovery time to 
reconstruct a packet delivery tree after sudden end host failures, 
and (c) control overhead, that represents protocol scalability for a 
large number of receivers.  
In the ALM session, each end host is a member of the delivery 
tree, and it leaves freely and may fail sometimes. This is not a 
problem in IP multicast, because the non-leaf nodes in the 
delivery tree are routers and do not leave the multicast tree 
without notification. In ALM, one of the problems which we have 
to consider is to reconstruct the overlay multicast tree after a node 
departure. The time to receive the data flow again after a node 
departure is important for multicast applications such as live 
media streaming, because all the children nodes are disconnected. 
It is therefore quite important to maintain the media quality by 
quickly reconstructing the overlay trees, but little attention has 
been given to this problem. Most researchers use a reactive 
approach, in which nodes start searching for their new parent after 
departure of their old parent node. It usually takes several seconds 
to restore the overlay tree. It is therefore important to find an 
effective mechanism to reconstruct the overlay trees. 
On the other hand, a proactive approach takes into account the 
node departure before it happens. The basic idea is that each non-
leaf node in the overlay multicast tree pre-computes a backup 
route. In Probabilistic Resilient Multicast (PRM) [12], each host 
chooses a constant number of other hosts at random and forwards 
data to each of them with a low probability. It enables each host 
to have a backup route. However, PRM generates extra data 
overhead.  
Another proactive approach was proposed by Yang et al [13], 
which we call Yang’s approach in this paper. It calculates the 
degree each host has, and ensures backup route proactively 
whenever a node leaves or joins. Degree represents a outbound 
link. It is inevitable to consider the degree bound in overlay 
multicast, which can be easily observed in streaming applications. 
Each host limits the number of children on the tree it is willing to 
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support. For example, assume the bit rate of media is B and the 
outbound bandwidth of an end host is bi. The total number of 
connections it can establish with the outside world is [bi / B]. We 
describe the total number of the connections as maximum degree 
of the end host. In Yang’s approach, a parent node calculates the 
residual degree of its children first. Residual degree is 
represented as unused degree.  Let )(xdm be the maximum degree 
of, )(xdu  be the used degree and )(xd r be the residual degree of 
node x. Obviously )()()( xdxdxd rum += . 

With the degree constraints, when its children do not have enough 
residual degrees to ensure their backup routes, the parent node 
employs the residual degrees of grandchildren nodes and below in 
calculating until they can finally ensure backup routes. This 
calculating process generates extra data overheads and is not 
scalable. Volume of control traffic can be significant for some 
overlay multicast applications.  
We therefore propose a new proactive approach in order to avoid 
the degree limitation and generating heavy overheads. By forcing 
at least one reserved degrees in each host, backup routes can be 
always established among the parent of x (i.e. the grandparent of 
x’s children) and children nodes. It means that our proposal does 
not generate much overhead to ensure backup routes. We have 
carried out extensive simulations and demonstrate that our 
proposal can recover from node departures two times faster than 
reactive approaches and can achieve much lower overheads than 
Yang’s proactive method. Although reserved degrees cause slight 
increase in delay due to the tree becoming higher, this 
disadvantage diminishes as degrees increases. Furthermore, we 
implemented our proposal in software, and experimented with 
P2P live video streaming over the actual network. The results of 
our implementation verify the effectiveness of our approach and 
convince us that our proposal achieved better streaming quality. 
The rest of the paper is structured as follows. The next section 
provides an overview of ALM protocols and the problem 
description of this paper. Section 3 provides our proposal in detail. 
Section４  presents the simulation and implementation results. 
Finally, Section 5 concludes the paper. 

2. An Overview of ALM Protocols and 
Problem Description 

2.1 Overview of ALM Protocols 
Most application layer multicast protocol studies have focused on 
how to construct an efficient multicast tree.  
ALMI [2] employs a centralized solution. In a centralized scheme, 
a central controller is used to compute and instruct the 
construction of the delivery tree based on the information of 
metrics (e.g. distances, degree bounds) provided by the overlay 
members. This information is exchanged between nodes. Such a 
measurement technique often consumes a lot of bandwidth. This 
type of mechanism exchanges information with some hosts 
constantly and is called Mesh protocol. There are also Narada [3] 
and Scattercast [4] known as Mesh-first protocol. The Narada 
protocol keeps state about all other members that are part of the 
group. This information is also periodically refreshed. 
Distribution of such state information about each member to all 
other members leads to relatively high control overhead. The 

Scattercast protocol builds a routing table using a protocol 
called Gossamer for neighbor discovery in environment 
with multicast proxies. As most mesh protocols require each 
member to estimate distance to all or a large number of the 
members, they are not suitable for large scale applications. 
In contrast, Yoid [5], Overcast [6] and Peercast [7] are distributed 
tree based protocols for larger groups.  Our proposal is also a tree 
based protocol. This constructs a shared data delivery tree first. 
Packets are transported from the source node to its children and 
from the children to the grandchildren and below in order. In 
some methods, each member discovers a few other members of 
the multicast group that are not its neighbors on the overlay tree 
and establishes and maintains additional control links to these 
members after tree construction. The Yoid protocol incorporates 
loop detection and avoidance mechanisms when members change 
parents in the tree. If there is a loop path in the tree, the data 
streaming consumes away the bandwidth. The Overcast protocol 
targets creating high bandwidth channels from one source to 
receivers. It may not consider the latency, but minimizing tree 
depth reduces buffering delays. The Peercast protocol considers 
join and leave algorithm. It uses the round trip time method in 
join and the grandfather method in leave. A node in tree based 
protocols does not make as many connections as in mesh 
protocols. Tree construction of our proposal is based on the 
Peercast algorithm. Additionally our proposal considers 
robustness against node leaves and failures. 
OMNI [9] defines a local transformation for the overlay tree to 
minimize the average latency of the entire hosts with degree 
constraints. Local transformation occurs between nearby nodes on 
the overlay tree periodically, and each host uses probabilistic 
transformation to optimize the overlay tree as a whole. In this 
paper, we do not consider dynamic tree reconstruction. However 
we use a round trip time as a metric in the tree construction, thus 
our proposal constructs a low delivery latency tree to some extent.  
ZIGZAG [8] and NICE [14] use a hierarchical cluster-based 
approach to construct overlay trees. Both of them use cluster 
leaders to manage the clustered overlay structure. The ZIGZAG 
protocol  avoids network bottlenecks and keeps end-to-end delay 
lower. The hierarchy of the NICE protocol is for scalability to 
large groups. Our proposal does not adopt a hierarchical structure, 
but can adopt it along with the recent works.  
There is a method using both delay and bandwidth as a metric, 
which places more emphasis on bandwidth and less on delay [12]. 
Scheme [13] selects some low delay nodes first, and selects the 
node in those so that the bandwidth can be used most efficient.. 
Our proposal does not use bandwidth as a metric in tree 
construction but our main purpose is holding backup routes 
proactively with low overhead. 
The problem caused by node failures in overlay multicast has 
been recognized in more recent work. Peercast  uses a reactive 
approach to deal with node leaves or failures in overlay multicast. 
It finds appropriate places in the subtree of the grandparent or the 
root for the affected nodes after failure happens. The time to find 
an appropriate place may be long and those affected nodes may 
even compete with each other to connect to other nodes. Our 
proposal differs in that each node has its backup route before node 
departures, so the time to find its appropriate place after node 
departure can be reduced. We will describe the difference 
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between a reactive approach and a proactive approach in detail in 
Section 2.2 and 2.3. 
PRM [10] uses a proactive method for overlay multicast. It 
constructs a tree first. Randomized forwarding of this method 
enables fast recovery from failure of overlay nodes. A node in this 
method constantly sends packets for Randomized forwarding. 
Once a node in our proposal gets its backup route, it does not send 
packets for holding backup route unless the neighbors have 
concern with changes of the overlay topology. Another proactive 
method [11] uses a backup parent. It decides the backup parent 
before node departures happens. When the node departure 
happens, affected nodes receive data from the backup parents. 
Our proposal achieves holding a backup route of each node with 
lower overhead.  We will describe the difference between our 
proposal and other proactive approaches in Section 2.3 and 3. 
Multiple Description Coding (MDC) is used in Split Stream [15].  
This splits a media stream into multiple stripes, and using separate 
multicast trees to distribute each stripe. Even if affected nodes 
cannot receive one stripe after s node departure happens, they can 
continue playing media stream by using other stripes. This paper 
does not incorporate MDC, but it can be easily done by applying 
our method to the delivery tree of each description. 

2.2 Reactive Approach 
Most of these ALM methods employ a reactive approach, in 
which tree recovery is initiated after node departure. In this 
reactive approach, a node which leaves the overlay tree sends a 
message to inform other nodes to be affected by its leaving such 
as its parent and children. Affected nodes cannot receive a data 
temporally until they connect to a new parent node. When a node 
suddenly fails, it cannot send a message to affected nodes, and 
they will not notice the failure for a while. Heartbeat mechanism 
helps the affected node to notice the failure. The parent and 
children nodes send a heartbeat packet to each other periodically. 
When the children nodes fail to receive heartbeat packets from the 
parent node over a period of time, the children nodes figure the 
parent node as a failure. However, the children nodes need a 
timeout period to recognize the failure. They cannot receive data 
flow all that time. Peercast proposes several recovery processes 
after a node departure, as listed below. 
 
� Root   
When a node leaves the tree or fails, each of its children tries 
connecting to the root. The subtree rooted at each of its children is 
maintained. Only children of the departed node rejoin the root. 
The root will try to accommodate them. The root accepts them as 
long as its degree does not become its max. If degree of the root is 
exhausted, the root will redirect some or all of them to its 
descendant. This redirection algorithm is also used in other 
recovery processes. 
� Root-All 
When a node leaves the tree or fails, all its descendants contact 
the root. 
� Grandfather 
Like the Root, when a node leaves, the children of the departure 
node contact the notified grandfather. When a node fails, the 

children contact the root node because the children cannot receive 
a message about their grandfather from their parent. 
� Grandfather-All 
When a node leaves the tree or fails, all its descendants contact 
the grandfather.  
In these methods, it has been shown that the grandfather approach 
is most efficient. We therefore choose Peercast algorithm with the 
grandfather process as a comparison with our proposal.  
The main task in this paper is reconstructing the tree by finding a 
new parent for each affected child as fast as possible when node 
departures happen. However, especially in the node failure phase, 
it takes long time to find a new parent because each affected node 
connects to its new parent by contacting the root in the tree, and 
the root might be quite far from the affected node. Furthermore, 
when the degree of upper layer nodes of the tree is exhausted, the 
redirection operation has to be repeated and might reach the node 
located at the lowest layer. In addition to taking a long time, 
redirection generates extra packets. If the number of children of a 
departed node is large, obviously the grandfather will not be able 
to accept all the children, so redirections will happen. Therefore, 
it is inevitable that it takes a lot of time to find a new parent in the 
reactive approach. 

2.3 Proactive Approach 
In a proactive approach, each host has a backup route to recover 
from the parent departure. Once a node departure happens, 
affected nodes connect to their backup route node, thus affected 
nodes can receive data flow after lower interruption time than that 
of the reactive approach. 
PRM proposed a proactive approach with randomized forwarding 
in reconstructing an overlay tree when nodes departure happens. 
In PRM, each overlay node chooses a constant number of other 
overlay nodes at random and forwards data to each of them with a 
low probability. Randomized forwarding seems to be effective in 
some situations, but this scheme may generate some overhead 
traffic to send packets at random constantly.  
In Yang’s proactive approach [11], each non-leaf host calculates a 
backup parent for its children. A backup route is ensured by using 
residual degree of nodes in the overlay tree. Each host uses (1) to 
figure out if its all children can form a backup route. 

∑
−

=

−≥
1

0

1)(
n

j
j nCd                         (1) 

A node in multicast session has n children { 110 ,,, −⋅⋅⋅ nccc }. 

)( jCd is the residual degree of the child jC . ∑ −

=

1

0
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n

j jCd  means 

the sum of the residual degrees of the children nodes. First, a  
parent node calculates residual degrees of the children. If the total 
residual degree of the children is not less than n-1, all its children 
can form their backup routes. If not, the children cannot. In this 
case, the parent node calculates the total residual degree including 
the residual degree of descendants of the children. Second, the 
parent node selects the child that has the smallest latency from the 
grandparent to it. The child holds the backup route to the 
grandparent. The subtree of the child which holds the backup 
route supplies a backup route to the other children. Then, the 
descendants of the child and the child measure the latencies to the 
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other children, and the smallest edge is selected. This operation is 
repeated until the all children hold their backup routes.  
In Fig.1, we outline the algorithm of Yang’s proactive approach 
to form a backup route. The parent node is node 3, and its 
children are node 5, 6 and 7. The maximum degree of each host is 
3. The sum of the residual degree of them is less than (n-1), where 
n = 3 in this case, so their total residual degree is less than 2. They 
cannot form their backup routes among them. Then node 3 finds 
the descendants of its children to make the total residual degree 
larger than or equal to 2. When the total residual degree of the 
children and the grandchildren become larger than or equal to 2, 
the children can form their backup route. In Fig.1, node 6 has the 
smallest latency to grandparent and holds the backup route to 
node 1. Next, node 6, 11 and 12 measure their latencies to node 5 
and 7. By the result, node 5 holds the backup route to node 6.  
Node 7 holds the backup route to node 9 by the same way. In this 
case, the backup routes of the children are formed by using the 
residual degrees of the children and grandchildren. However, 
searching the residual degrees does not always finish in the 
children and grandchildren. When this operation continues in 
lower layer, it seems to generate many packets. 
As mentioned above, the reactive approach takes a lot of time to 
recover from node departures, and the previous proactive 
approaches generate extra packets. We therefore propose a 
proactive approach which suppresses extra packets as described in 
next section. 

3. Proactive Route Maintenance over 
Redundant Overlay Trees 
In our proposal, each node holds its backup route with low 
overhead. We construct an overlay tree without each host 
exhausting its degree. Each host constantly has residual degrees 
not less than 1. We apply the word a redundant overlay tree to this 
overlay tree. The children of each node can ensure their backup 
route between the grandparent and them by using their residual 
degree. This simplifies backup route calculation and contributes 
to overhead reduction. We show our proposal in detail below. 
First, we show the process of node joining the overlay tree in Fig 
2. It is assumed that maximum degree of each node is equal to 4. 
We then limit the active degree of each node to 3 and reserve 1 
degree for backup route maintenance. In previous work, when 
new node 8 requests to connect to node 1, node 1 accepts node 8 
to join as its child, because its degree is not exhausted.  However, 
in our proposal, node 1 refuses the request because the residual 
degree of node 1 is only 1. Node 8 sends a join request to node 2 
after receiving a redirect message from node 1. As a result node 8 
becomes a child of node 2. 
Next, we show how to decide the backup route of each node in 
our proposal in Fig.3. When node 8 joins the overlay tree and 
become a child of node 2, node 2 updates its children list. Node 2 
sends the children list to node 1. After that node 1 measures a 
round trip time between node 1 and each node written on the list, 
and ranks the nodes in ascending order. Lastly node 1 informs 
them of their backup route. A node having the smallest round trip 
time holds a backup route to the grandparent. The second node 
has a backup route to the smallest RTT node, and the third node 
has a backup route to the second node. A node other than the 
smallest RTT node has the backup route to the next smaller RTT 
node than itself. In Fig.3, if the ascending order of the nodes in 
round trip time is node 5, 6, 8, the smallest RTT node 5 has the 
backup route to node 1. The second node 6 has the backup route 
to node 5. The largest RTT node 8 has the backup route to the 
second node 6. In a specific case, if the children list of node 2 
includes node 8 only (i.e. no other children exist), node 2 
immediately informs node 8 that node 1 is a backup parent of 
node 8. 
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Fig.1. Finding a backup route in Yang’s approach 
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Fig.2. New node participation process in our proposal 
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Fig.3. Finding a backup route in our proposal 
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This backup route calculation is carried out whenever a node joins, 
leaves and fails. When a node leaves the overlay tree, the backup 
route is immediately applied and the new backup route calculation 
is initiated. Note that the backup route calculation is required only 
at the children layer of the departure node. It never goes down to 
calculate in the lower layers dissimilar to the previous approach.  
In some rare cases, a node cannot use its backup route. When the 
current parent and backup parent node leave or fail at the same 
time, the node cannot connect to a new node immediately. 
Another case is that a node is not informed of its backup parent 
node. This happens when the parent node leaves the tree without 
noticing the node of its backup parent node before the backup 
route calculation is finished. In [11], handling these cases is 
shown. In this case, it uses the ancestor-list, which contains  node 
information from grandparent to root. Our approach also uses the 
same method in such cases. In the method, when a node connects 
its backup parent node and the backup parent node does not reply, 
it uses the ancestor list. First, it ordinarily joins the grandparent 
and it follows the redirection algorithm whether the grandparent 
accepts the node or not. When the grandparent does not exist 
because the grandparent has left or failed at the same time as the 
parent has, the node tries to connect to a node in higher layers of 
the ancestor list.  
Backup routes created in the redundant overlay tree are certainly 
efficient as long as each host does not exhaust its degree. 
However it is possible that a host exhausts its degree by accepting 
a node rejoining in the backup route procedure. When this 
happens, a tree reconstruction procedure is invoked by the host 
itself in order to keep the route redundancy. This procedure is 
carried out by asking the children of a backup route node except 
the newly connected node whether their degree is exhausted. At 
the time the newly connected node finds that a certain node has 
residual degree, the newly connected node moves to the node that 
has the most residual degree. We show the procedure in Fig.4. 
Node 2 uses up its degree because node 8 joined node 2 as its 
backup route. Node 2 sends a query to other children, which are 
nodes 5, 6 and 7, and they reply hit or fail messages to node 8. 
The hit message means it can accept join. The fail message means 
it cannot accept. Node 8 moves to the node which has sent the hit 
message first. In Fig.4, node 6 sends a hit message to node 8, and 

node 8 joins node 6. If all messages of the children are fail, the 
newly connected node joins the node which it has received a 
message first from. It receives a redirection message from the first 
node.  
One question in our proposal is that there are the nodes whose 
maximum degrees are zero or one. Existence of nodes with zero 
degree (receiving only) is a common problem in ALM. Nothing 
could be done but they are treated as a leaf node in the overlay 
tree. This is similar to the case of an incentive approach adopted 
by recent P2P file sharing system like BitTorrent[16]. Handling of 
the nodes which have one maximum degree is a specific problem 
in our proposal, because we construct the redundant overlay tree 
by forcing reserved one degree in each node. A node of one 
degree can not have a child node. In the case that the maximum 
degrees of the all children of a node are one, our proposal cannot 
construct a subtree rooted at the children, so the tree can not be 
constructed effectively. In the worst case that the maximum 
degrees of the all children of the root node are one, our proposal 
can not construct the tree any more. To avoid this case, we allow 
the nodes of one maximum degree to have a child although their 
degree is one. Another problem is that they cannot provide 
backup routes because of exhausting their one maximum degree 
or zero maximum degree. We then decide that each node can have 
only one node whose maximum degree is one or zero, and place 
the node at the end of the backup spanning tree so that the node 
need not provide a backup route. We show this case in Fig.5. 
Node 2 is a parent of three children, which are node 3, 4, and 5. 
The maximum degree of node 5 is one. We place the node 5 at the 
end of the spanning tree of the backup routes, and node 5 needs 
not provide a backup route to other nodes. Finally, all the children 
nodes can get their backup routes. 

4. PERFORMANCE EVALUATION 
We evaluate the performance of our proactive approach using 
simulations and software implementations. We are mainly 
interested in the resilience performance, how fast the overlay tree 
can be reconstructed and how small the control overheads can be 
kept by redundant backup routes. We compare our proactive 
method with a reactive method which uses grandfather policy 
described in Section 2.2. In simulations, we also compare our 
method with Yang’s method, which is another proactive method 
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Fig.4.Reconstruction of a redundant tree 
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described in Section 2.3. We show simulation results in Section 
4.1 and implementation results in Section 4.2. 

4.1 Simulation Results 
We carried out the simulations by ns-2[17]. We show simulation 
results in Figs 7, 8, 9, 10.and 11. Our simulation topology has 24 
routers. Four routers of them are domain-to-domain routers as 
shown in Fig.6. The others are set up at random between end-
hosts. The distance between two end-hosts is the sum of link 
delays on the shortest path between them. The delay and 
bandwidth between the domain routers is 100ms and 100Mbps. 
The delay between the routers in a domain varies from 10 to 50 
ms and the bandwidth is 100Mbps. The delay and bandwidth 
between a router and end-hosts are 10ms and 10Mbps.  The nodes 
randomly connect to one of the 20 routers except the four inter 
domain routers. The total number of nodes varies from 25 to 200. 
The link latency varies from 10ms to 100ms. The maximum 
degree of each node varies from 1 to 6. For the experiment in 
Fig.11, we fixed the degree of each host at a particular value. The 
overlay tree is constructed first by all hosts, and then nodes 
randomly join and leave the overlay tree every 15 seconds for 300 
seconds.  

4.1.1 Comparison of Recovery Time 
First, we use the average recovery time as a performance measure. 
It is the average time for an affected node to find a new parent. 
Fig.7 plots the average recovery time of leave and failure in 
simulations. Each node send heartbeat message every one second. 
If a node does not receive any heartbeat messages from its 
connected nodes for one second, it decides that the nodes have 
become failure.   
In Fig.7, the average recovery time against node leaving in the 
reactive approach is about 1300ms in each number of nodes.  The 
average recovery times against node leaving in proactive method 
(our proposal and Yang’s approach) are less than about half of the 
reactive method, about 500ms. In case of node failures, as the 
number of nodes increases, the average recovery time of the 
reactive approach becomes larger. The average recovery time of 
our proposal and Yang’s approach are about 1400ms.  
The proactive methods enable the affected nodes to immediately 
connect to their backup routes. This is common to both proactive 
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methods, so their results are nearly equal. On the contrary, in the 
reactive approaches, requests may be rejected by the contacted 
node due to degree constraint and redirection is repeated until the 
request is accepted. Especially in the node failure cases, affected 
nodes have to contact to the root in the reactive approach.  As the 
number of nodes increases from 25 to 200, the recovery time of 
the reactive approach increases. This is because the height of an 
overlay tree becomes bigger, and many redirections happen.  

4.1.2 Comparison of Control Overheads 
We show the overheads of the reactive approach, Yang’s 
approach and our proposal. The overhead is a total number of 
control packets to maintain the overlay tree.  
For the reactive approach, the control overhead comes from the 
control messages exchanged for the affected nodes to find new 
parents. We experimented with two redirection methods; a round 
robin method and a round trip time method. In the round robin 
method, when a node whose degree is exhausted receives a join 
message from a newly joining node, the node redirects the 
message to each of its children in order. In the round trip time 
method, when a node whose degree is exhausted receives a join 
message from a newly joining node, the node sends its children 
list to the newly joining node. Then the newly joining node 
measures the round trip times between each node on the list and 
itself. After that the newly joining node sends a join message to 
the smallest round trip time node. The round trip time method 
uses more packets than the round robin method, but the overlay 
tree is optimized to be low latency.  
For the proactive method, the control messages consist of two 
parts. 1) Similar to reactive approaches, control messages are 
exchanged for the children of departure nodes to find their new 
parent, though we may need fewer steps in the proactive approach. 
2) In addition, every non-leaf node exchanges information for 
deciding a backup route. 
Fig.8 compares the overheads of the round robin method with 
redirection. The number of nodes varies from 25 to 200 in 
simulations. In Fig.8, we can see Yang’s proactive approach 
generates higher overhead than others. In comparison with Yang’s 

approach, our proactive approach suppresses the overhead. The 
reactive approach is the smallest in this respect, because the 
proactive approaches need to exchange information to decide 
backup routes. Furthermore, the round robin method for 
redirection does not generate so many packets.   
Fig.9 compares the overheads of the round trip time method for 
redirection. The number of nodes varies from 25 to 200 in 
simulations. In the reactive approach, as the number of nodes 
increases, the overhead increases a lot. This is because as the 
number of nodes increases, more redirection is required. 
Redirection generates a volume of overheads to measure RTT.  
As shown in Fig.8 and Fig.9, our proposal does not generate 
packets as many as Yang’s approach for holding backup routes. 
Holding a backup route operation of our proposal needs fewer 
packets than Yang’s approach. The redundant overlay tree 
structure of our proposal enables this. When changes of the tree 
structure happen by join, leave or fail, the nodes have to update 
the backup routes. As the session continues long time and many 
nodes join the session, the difference of the overheads between 
our proposal and Yang’s approach will be larger. In Fig.8, 
overheads of Yang’s approach and our proposal are larger than 
the reactive approach, but in Fig.9, the reactive approach 
generates more packets than the proactive approaches. In the case 
that nodes exchange much information in redirection and many 
nodes join the session, the reactive approach is not useful. In most 
ALM protocols, each node joins the overlay tree following their 
own metric. This means that nodes exchange a lot of information 
to optimize the overlay tree in join and redirection process. ALM 
is also used in media streaming, where many people participate in 
the ALM session. Consequently, the proactive methods are more 
suitable for ALM than the reactive approaches in terms of 
overhead. Furthermore, our proposal generates fewer packets than 
Yang’s proactive approach for ensuring backup routes. Among 
the proactive approaches, our proposal can save bandwidth most. 

4.1.3 Comparison of Data Delivery Delays 
Proposed redundant overlay tree simplifies a backup route search 
and contributes to overhead reduction. However, that structure 
causes the height of the overlay tree to be larger and possibly 
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leads to delay increase overall, because all nodes do not use their 
degree full. Therefore, an obvious problem of our approach is 
increase in data delivery delays. Fig.10 shows how the average 
transfer latency in the tree varies the number of nodes from 25 to 
200 in simulations.  
In Fig.10, we can see that the average delivery delay of our 
proposal is larger than other methods. This means that hop counts 
increase in our proposal. Next, we show an interesting result in 
Fig.11. Maximum degree of all nodes is fixed at the same number 
when the number of nodes is 200. Fig.11 shows the average 
delivery delay in each maximum degree. When the degree is fixed 
at three, delay of our proposal is largest. However, as the degree 
number increases, the difference between our proposal and the 
others becomes quite small. The average transfer latency of our 
proposal is about 380ms like other methods when degree is fixed 
at 6, 7 and 8. We can recognize that, as the degree of node 
becomes larger, the difference between our proposal and the 
others becomes smaller. This is because larger degree contributes 
to reducing the overlay tree height. They lead to reduction of 
delay in the resilient overlay structure. Increasing maximum 
degree is not easy, but it is possible in an application of low bit 

rate multimedia. What is more, we do not think that the difference 
of the delivery delays between our proposal and others is so 
critical in such a case of  one-way streaming application.  

4.2 Implementation Results 
In addition to simulations, we implemented the prototype of the 
reactive approach and our proposal with C++ on Windows XP.  
Video codec is ITU-T H263+. Maximum degree of each node is 
fixed at 3. Total 25 nodes are deployed over three different 
networks and each network connects to the backbone in Japan. 
We can expect the backbone to have high bandwidth, so we have 
to consider the backbone with low bandwidth in future work. We 
will describe about this in Section 5. Firstly in the experiment, the 
source node waits for joining nodes. After the source node 
receives a join message, it starts sending the data flow of a media, 
encoding the media captured from the capture card in real time. 
When the source node exhausts its degree, it redirects the next 
joining node to its children. All nodes join the ALM session, and 
then each node joins or leaves randomly for 30 minutes. We show 
implementation results in Figs.12, 13, 14 and 15. 
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4.2.1 Comparison of Recovery Time 
In Fig.12, we show the average recovery time of 25 nodes in 
implementation. Recovery time of our proposal is less than half of 
the reactive approach. This point is the same as in simulations. As 
compared to the reactive approach, we could confirm that the 
media playback quality of our proposal was much better than the 
reactive approach when node departures happen. In the reactive 
approach, playback was felt like “freeze frame” for a moment, but 
in our proposal, decoded pictures continued to play smoothly.  

4.2.2 Comparison of Control Overheads 
Fig.13 and Fig.14 represent the overheads when the number of 
nodes is 15 and 25 in the implementations. In Fig.13, we used the 
round robin method with redirection. Overhead of our proposal is 
more than that of the reactive approach. This is because the round 
robin method does not generate so much overhead in redirection 
and our proposal generates overhead for ensuring backup routes.  
On the other hand, Fig.14 shows that overhead of our proposal is 
almost the same as the reactive approach at 25 nodes. We used the 
round trip time method with redirection. As the number of nodes 
increases, overhead of the reactive method increases. We can also 
see this trend in the simulation result of Fig.9.  

4.2.3 Comparison of Data Delivery Delays 
Fig.15 shows the average delivery delays in implementation when 
the number of nodes in session is 25. The delay of our proposal is 
more than the reactive approach. However, in media playback, we 
do not feel any difference between our proposal and the reactive 
approach. We think this difference is not so critical if we consider 
the delay caused by video coding and decoding. 
 
In summary, as shown in the simulations and implementations, 
we could confirm that our proposal can recover from node 
departures much faster than the reactive approach. Especially, we 
confirmed that our proposal could continue to play media 
streaming smoothly in implementations. With regard to overheads, 
we could reduce them for maintaining backup routes, and our 
proposal always generates less overheads than Yang’s approach. 
In the specific case, our proposal can achieve less overheads than 
the reactive approach.  About the transfer delay, our proposal is 
more than other methods, but we did not feel critical difference 
between our proposal and the reactive approach in playback. We 
realize our approach can resolve the problems of node departures 
and overheads while maintaining backup routes efficiently. 

5. Concluding Remarks 
We presented a novel method of proactive route maintenance for 
ALM with the redundant overlay tree. It enables fast recovery 
from node departures and reduction of control overheads. In 
comparison with the reactive approach and Yang’s proactive 
approach, the recovery time of our proposal is much faster than 
the reactive approach, and as fast as Yang’s proactive approach. 
In implementations, the recovery time of our proposal is faster 
than reactive approach. We also realized that media playback 
quality of our proposal was much better than the reactive 
approach when node departures happen. Control overhead of our 
proposal is less than Yang’s approach and, in the specific case it 
is less than the reactive approach. Although the data delivery 

delay tends to be larger than other methods, the difference from 
other methods becomes smaller as the degree increases.  
In future work, the implementation should be experimented in 
different environment which has bottleneck or large delay links. 
We will use NIST Net, which is a linux based network emulator 
[18]. NIST Net can emulate the critical end-to-end performance 
characteristics imposed by various wide area network situations, 
so we can set end-to-end delays and bandwidths. We will obtain 
more extensive results. 
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