
Tree-Based Application Layer Multicast using Proactive
Route Maintenance and its Implementation

Tetsuya Kusumoto, Yohei Kunichika1, Jiro Katto, and Sakae Okubo
Graduate School of Science and Engineering, Waseda University

3-4-1 Okubo
Shinjuku-ku, Tokyo, 169-8555 Japan

81-3-5286-3393

{kusumoto, yohei, katto}@katto.comm.waseda.ac.jp, sokubo@waseda.jp

1 Yohei Kunichika is currently with RICOH Corporation, Japan

ABSTRACT
The purpose of this study is to maintain efficient backup routes
for reconstructing overlay trees quickly. In most conventional
methods, after a node leaves the trees, its children start searching
for a new parent. In this reactive approach, it takes a lot of time to
find a new parent. In this paper, we propose a proactive approach
to finding a new parent over the overlay trees before the current
parent leaves. A proactive approach allows a node to find its new
parent immediately and switch to the backup route smoothly. In
our proposal, the structure of the overlay tree using a redundant
degree can decide a new parent without so much overhead.
Simulations demonstrate our proactive approach can recover from
node departures 2 times faster than reactive approaches, and can
construct overlay trees with lower overheads than another
proactive method. Additionally we carried out experiments over
actual networks and their results support the effectiveness of our
approach. We confirmed that our proposal achieved better
streaming quality than conventional approaches.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.4 [Computer-Communication
Networks]: Distributed Systems

General Terms

Design, Experimentation, Performance

Keywords
Application Layer Multicast, Redundant Overlay Tree, P2P
Streaming, Proactive Route Maintenance

1. INTRODUCTION
ALM (Application Layer Multicast) implements the multicast
functionally at end-hosts. Different from IP multicasting, which
unrealistically needs global deployment of routers with IP
multicasting capability, ALM needs only installation of

application software and requires no change in the current
network infrastructure. In addition, it provides flexibility in
routing such as multipath packet transfer and load balancing.
The most active research area in ALM is design of routing
protocols [2]-[16]. There are several measures to evaluate the
effectiveness of the routing protocols as the following: (a) quality
of the data delivery path, that is measured by stress, stretch and
node degree parameters of overlay multicast tree, (b) robustness
of the overlay, that is measured by the recovery time to
reconstruct a packet delivery tree after sudden end host failures,
and (c) control overhead, that represents protocol scalability for a
large number of receivers.
In the ALM session, each end host is a member of the delivery
tree, and it leaves freely and may fail sometimes. This is not a
problem in IP multicast, because the non-leaf nodes in the
delivery tree are routers and do not leave the multicast tree
without notification. In ALM, one of the problems which we have
to consider is to reconstruct the overlay multicast tree after a node
departure. The time to receive the data flow again after a node
departure is important for multicast applications such as live
media streaming, because all the children nodes are disconnected.
It is therefore quite important to maintain the media quality by
quickly reconstructing the overlay trees, but little attention has
been given to this problem. Most researchers use a reactive
approach, in which nodes start searching for their new parent after
departure of their old parent node. It usually takes several seconds
to restore the overlay tree. It is therefore important to find an
effective mechanism to reconstruct the overlay trees.
On the other hand, a proactive approach takes into account the
node departure before it happens. The basic idea is that each non-
leaf node in the overlay multicast tree pre-computes a backup
route. In Probabilistic Resilient Multicast (PRM) [12], each host
chooses a constant number of other hosts at random and forwards
data to each of them with a low probability. It enables each host
to have a backup route. However, PRM generates extra data
overhead.
Another proactive approach was proposed by Yang et al [13],
which we call Yang’s approach in this paper. It calculates the
degree each host has, and ensures backup route proactively
whenever a node leaves or joins. Degree represents a outbound
link. It is inevitable to consider the degree bound in overlay
multicast, which can be easily observed in streaming applications.
Each host limits the number of children on the tree it is willing to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
P2PMMS‘05, November 11, 2005, Singapore.
Copyright 2005 ACM 1-59593-248-8/05/0011…$5.00

49

support. For example, assume the bit rate of media is B and the
outbound bandwidth of an end host is bi. The total number of
connections it can establish with the outside world is [bi / B]. We
describe the total number of the connections as maximum degree
of the end host. In Yang’s approach, a parent node calculates the
residual degree of its children first. Residual degree is
represented as unused degree. Let)(xdm be the maximum degree
of,)(xdu be the used degree and)(xd r be the residual degree of
node x. Obviously)()()(xdxdxd rum += .

With the degree constraints, when its children do not have enough
residual degrees to ensure their backup routes, the parent node
employs the residual degrees of grandchildren nodes and below in
calculating until they can finally ensure backup routes. This
calculating process generates extra data overheads and is not
scalable. Volume of control traffic can be significant for some
overlay multicast applications.
We therefore propose a new proactive approach in order to avoid
the degree limitation and generating heavy overheads. By forcing
at least one reserved degrees in each host, backup routes can be
always established among the parent of x (i.e. the grandparent of
x’s children) and children nodes. It means that our proposal does
not generate much overhead to ensure backup routes. We have
carried out extensive simulations and demonstrate that our
proposal can recover from node departures two times faster than
reactive approaches and can achieve much lower overheads than
Yang’s proactive method. Although reserved degrees cause slight
increase in delay due to the tree becoming higher, this
disadvantage diminishes as degrees increases. Furthermore, we
implemented our proposal in software, and experimented with
P2P live video streaming over the actual network. The results of
our implementation verify the effectiveness of our approach and
convince us that our proposal achieved better streaming quality.
The rest of the paper is structured as follows. The next section
provides an overview of ALM protocols and the problem
description of this paper. Section 3 provides our proposal in detail.
Section４ presents the simulation and implementation results.
Finally, Section 5 concludes the paper.

2. An Overview of ALM Protocols and
Problem Description

2.1 Overview of ALM Protocols
Most application layer multicast protocol studies have focused on
how to construct an efficient multicast tree.
ALMI [2] employs a centralized solution. In a centralized scheme,
a central controller is used to compute and instruct the
construction of the delivery tree based on the information of
metrics (e.g. distances, degree bounds) provided by the overlay
members. This information is exchanged between nodes. Such a
measurement technique often consumes a lot of bandwidth. This
type of mechanism exchanges information with some hosts
constantly and is called Mesh protocol. There are also Narada [3]
and Scattercast [4] known as Mesh-first protocol. The Narada
protocol keeps state about all other members that are part of the
group. This information is also periodically refreshed.
Distribution of such state information about each member to all
other members leads to relatively high control overhead. The

Scattercast protocol builds a routing table using a protocol
called Gossamer for neighbor discovery in environment
with multicast proxies. As most mesh protocols require each
member to estimate distance to all or a large number of the
members, they are not suitable for large scale applications.
In contrast, Yoid [5], Overcast [6] and Peercast [7] are distributed
tree based protocols for larger groups. Our proposal is also a tree
based protocol. This constructs a shared data delivery tree first.
Packets are transported from the source node to its children and
from the children to the grandchildren and below in order. In
some methods, each member discovers a few other members of
the multicast group that are not its neighbors on the overlay tree
and establishes and maintains additional control links to these
members after tree construction. The Yoid protocol incorporates
loop detection and avoidance mechanisms when members change
parents in the tree. If there is a loop path in the tree, the data
streaming consumes away the bandwidth. The Overcast protocol
targets creating high bandwidth channels from one source to
receivers. It may not consider the latency, but minimizing tree
depth reduces buffering delays. The Peercast protocol considers
join and leave algorithm. It uses the round trip time method in
join and the grandfather method in leave. A node in tree based
protocols does not make as many connections as in mesh
protocols. Tree construction of our proposal is based on the
Peercast algorithm. Additionally our proposal considers
robustness against node leaves and failures.
OMNI [9] defines a local transformation for the overlay tree to
minimize the average latency of the entire hosts with degree
constraints. Local transformation occurs between nearby nodes on
the overlay tree periodically, and each host uses probabilistic
transformation to optimize the overlay tree as a whole. In this
paper, we do not consider dynamic tree reconstruction. However
we use a round trip time as a metric in the tree construction, thus
our proposal constructs a low delivery latency tree to some extent.
ZIGZAG [8] and NICE [14] use a hierarchical cluster-based
approach to construct overlay trees. Both of them use cluster
leaders to manage the clustered overlay structure. The ZIGZAG
protocol avoids network bottlenecks and keeps end-to-end delay
lower. The hierarchy of the NICE protocol is for scalability to
large groups. Our proposal does not adopt a hierarchical structure,
but can adopt it along with the recent works.
There is a method using both delay and bandwidth as a metric,
which places more emphasis on bandwidth and less on delay [12].
Scheme [13] selects some low delay nodes first, and selects the
node in those so that the bandwidth can be used most efficient..
Our proposal does not use bandwidth as a metric in tree
construction but our main purpose is holding backup routes
proactively with low overhead.
The problem caused by node failures in overlay multicast has
been recognized in more recent work. Peercast uses a reactive
approach to deal with node leaves or failures in overlay multicast.
It finds appropriate places in the subtree of the grandparent or the
root for the affected nodes after failure happens. The time to find
an appropriate place may be long and those affected nodes may
even compete with each other to connect to other nodes. Our
proposal differs in that each node has its backup route before node
departures, so the time to find its appropriate place after node
departure can be reduced. We will describe the difference

50

between a reactive approach and a proactive approach in detail in
Section 2.2 and 2.3.
PRM [10] uses a proactive method for overlay multicast. It
constructs a tree first. Randomized forwarding of this method
enables fast recovery from failure of overlay nodes. A node in this
method constantly sends packets for Randomized forwarding.
Once a node in our proposal gets its backup route, it does not send
packets for holding backup route unless the neighbors have
concern with changes of the overlay topology. Another proactive
method [11] uses a backup parent. It decides the backup parent
before node departures happens. When the node departure
happens, affected nodes receive data from the backup parents.
Our proposal achieves holding a backup route of each node with
lower overhead. We will describe the difference between our
proposal and other proactive approaches in Section 2.3 and 3.
Multiple Description Coding (MDC) is used in Split Stream [15].
This splits a media stream into multiple stripes, and using separate
multicast trees to distribute each stripe. Even if affected nodes
cannot receive one stripe after s node departure happens, they can
continue playing media stream by using other stripes. This paper
does not incorporate MDC, but it can be easily done by applying
our method to the delivery tree of each description.

2.2 Reactive Approach
Most of these ALM methods employ a reactive approach, in
which tree recovery is initiated after node departure. In this
reactive approach, a node which leaves the overlay tree sends a
message to inform other nodes to be affected by its leaving such
as its parent and children. Affected nodes cannot receive a data
temporally until they connect to a new parent node. When a node
suddenly fails, it cannot send a message to affected nodes, and
they will not notice the failure for a while. Heartbeat mechanism
helps the affected node to notice the failure. The parent and
children nodes send a heartbeat packet to each other periodically.
When the children nodes fail to receive heartbeat packets from the
parent node over a period of time, the children nodes figure the
parent node as a failure. However, the children nodes need a
timeout period to recognize the failure. They cannot receive data
flow all that time. Peercast proposes several recovery processes
after a node departure, as listed below.

� Root
When a node leaves the tree or fails, each of its children tries
connecting to the root. The subtree rooted at each of its children is
maintained. Only children of the departed node rejoin the root.
The root will try to accommodate them. The root accepts them as
long as its degree does not become its max. If degree of the root is
exhausted, the root will redirect some or all of them to its
descendant. This redirection algorithm is also used in other
recovery processes.
� Root-All
When a node leaves the tree or fails, all its descendants contact
the root.
� Grandfather
Like the Root, when a node leaves, the children of the departure
node contact the notified grandfather. When a node fails, the

children contact the root node because the children cannot receive
a message about their grandfather from their parent.
� Grandfather-All
When a node leaves the tree or fails, all its descendants contact
the grandfather.
In these methods, it has been shown that the grandfather approach
is most efficient. We therefore choose Peercast algorithm with the
grandfather process as a comparison with our proposal.
The main task in this paper is reconstructing the tree by finding a
new parent for each affected child as fast as possible when node
departures happen. However, especially in the node failure phase,
it takes long time to find a new parent because each affected node
connects to its new parent by contacting the root in the tree, and
the root might be quite far from the affected node. Furthermore,
when the degree of upper layer nodes of the tree is exhausted, the
redirection operation has to be repeated and might reach the node
located at the lowest layer. In addition to taking a long time,
redirection generates extra packets. If the number of children of a
departed node is large, obviously the grandfather will not be able
to accept all the children, so redirections will happen. Therefore,
it is inevitable that it takes a lot of time to find a new parent in the
reactive approach.

2.3 Proactive Approach
In a proactive approach, each host has a backup route to recover
from the parent departure. Once a node departure happens,
affected nodes connect to their backup route node, thus affected
nodes can receive data flow after lower interruption time than that
of the reactive approach.
PRM proposed a proactive approach with randomized forwarding
in reconstructing an overlay tree when nodes departure happens.
In PRM, each overlay node chooses a constant number of other
overlay nodes at random and forwards data to each of them with a
low probability. Randomized forwarding seems to be effective in
some situations, but this scheme may generate some overhead
traffic to send packets at random constantly.
In Yang’s proactive approach [11], each non-leaf host calculates a
backup parent for its children. A backup route is ensured by using
residual degree of nodes in the overlay tree. Each host uses (1) to
figure out if its all children can form a backup route.

∑
−

=

−≥
1

0

1)(
n

j
j nCd (1)

A node in multicast session has n children { 110 ,,, −⋅⋅⋅ nccc }.

)(jCd is the residual degree of the child jC . ∑ −

=

1

0
)(

n

j jCd means

the sum of the residual degrees of the children nodes. First, a
parent node calculates residual degrees of the children. If the total
residual degree of the children is not less than n-1, all its children
can form their backup routes. If not, the children cannot. In this
case, the parent node calculates the total residual degree including
the residual degree of descendants of the children. Second, the
parent node selects the child that has the smallest latency from the
grandparent to it. The child holds the backup route to the
grandparent. The subtree of the child which holds the backup
route supplies a backup route to the other children. Then, the
descendants of the child and the child measure the latencies to the

51

other children, and the smallest edge is selected. This operation is
repeated until the all children hold their backup routes.
In Fig.1, we outline the algorithm of Yang’s proactive approach
to form a backup route. The parent node is node 3, and its
children are node 5, 6 and 7. The maximum degree of each host is
3. The sum of the residual degree of them is less than (n-1), where
n = 3 in this case, so their total residual degree is less than 2. They
cannot form their backup routes among them. Then node 3 finds
the descendants of its children to make the total residual degree
larger than or equal to 2. When the total residual degree of the
children and the grandchildren become larger than or equal to 2,
the children can form their backup route. In Fig.1, node 6 has the
smallest latency to grandparent and holds the backup route to
node 1. Next, node 6, 11 and 12 measure their latencies to node 5
and 7. By the result, node 5 holds the backup route to node 6.
Node 7 holds the backup route to node 9 by the same way. In this
case, the backup routes of the children are formed by using the
residual degrees of the children and grandchildren. However,
searching the residual degrees does not always finish in the
children and grandchildren. When this operation continues in
lower layer, it seems to generate many packets.
As mentioned above, the reactive approach takes a lot of time to
recover from node departures, and the previous proactive
approaches generate extra packets. We therefore propose a
proactive approach which suppresses extra packets as described in
next section.

3. Proactive Route Maintenance over
Redundant Overlay Trees
In our proposal, each node holds its backup route with low
overhead. We construct an overlay tree without each host
exhausting its degree. Each host constantly has residual degrees
not less than 1. We apply the word a redundant overlay tree to this
overlay tree. The children of each node can ensure their backup
route between the grandparent and them by using their residual
degree. This simplifies backup route calculation and contributes
to overhead reduction. We show our proposal in detail below.
First, we show the process of node joining the overlay tree in Fig
2. It is assumed that maximum degree of each node is equal to 4.
We then limit the active degree of each node to 3 and reserve 1
degree for backup route maintenance. In previous work, when
new node 8 requests to connect to node 1, node 1 accepts node 8
to join as its child, because its degree is not exhausted. However,
in our proposal, node 1 refuses the request because the residual
degree of node 1 is only 1. Node 8 sends a join request to node 2
after receiving a redirect message from node 1. As a result node 8
becomes a child of node 2.
Next, we show how to decide the backup route of each node in
our proposal in Fig.3. When node 8 joins the overlay tree and
become a child of node 2, node 2 updates its children list. Node 2
sends the children list to node 1. After that node 1 measures a
round trip time between node 1 and each node written on the list,
and ranks the nodes in ascending order. Lastly node 1 informs
them of their backup route. A node having the smallest round trip
time holds a backup route to the grandparent. The second node
has a backup route to the smallest RTT node, and the third node
has a backup route to the second node. A node other than the
smallest RTT node has the backup route to the next smaller RTT
node than itself. In Fig.3, if the ascending order of the nodes in
round trip time is node 5, 6, 8, the smallest RTT node 5 has the
backup route to node 1. The second node 6 has the backup route
to node 5. The largest RTT node 8 has the backup route to the
second node 6. In a specific case, if the children list of node 2
includes node 8 only (i.e. no other children exist), node 2
immediately informs node 8 that node 1 is a backup parent of
node 8.

1

3 42

5 6 7

8 9 10 11 12 13 14 15

1

3 42

5 6 7

8 9 10 11 12 13 14 15

Fig.1. Finding a backup route in Yang’s approach

1

2 3 4

5 6 7

8
Data flow
Join message
Redirect message

1

2 3 4

5 6 7

8 1

2 3 4

5 6 7

8
Data flow
Join message
Redirect message

Fig.2. New node participation process in our proposal

1

2 3 4

5 6 7

Data flow
Backup route

8

1

2 3 4

5 6 7

Data flow
Backup route

8

Fig.3. Finding a backup route in our proposal

52

This backup route calculation is carried out whenever a node joins,
leaves and fails. When a node leaves the overlay tree, the backup
route is immediately applied and the new backup route calculation
is initiated. Note that the backup route calculation is required only
at the children layer of the departure node. It never goes down to
calculate in the lower layers dissimilar to the previous approach.
In some rare cases, a node cannot use its backup route. When the
current parent and backup parent node leave or fail at the same
time, the node cannot connect to a new node immediately.
Another case is that a node is not informed of its backup parent
node. This happens when the parent node leaves the tree without
noticing the node of its backup parent node before the backup
route calculation is finished. In [11], handling these cases is
shown. In this case, it uses the ancestor-list, which contains node
information from grandparent to root. Our approach also uses the
same method in such cases. In the method, when a node connects
its backup parent node and the backup parent node does not reply,
it uses the ancestor list. First, it ordinarily joins the grandparent
and it follows the redirection algorithm whether the grandparent
accepts the node or not. When the grandparent does not exist
because the grandparent has left or failed at the same time as the
parent has, the node tries to connect to a node in higher layers of
the ancestor list.
Backup routes created in the redundant overlay tree are certainly
efficient as long as each host does not exhaust its degree.
However it is possible that a host exhausts its degree by accepting
a node rejoining in the backup route procedure. When this
happens, a tree reconstruction procedure is invoked by the host
itself in order to keep the route redundancy. This procedure is
carried out by asking the children of a backup route node except
the newly connected node whether their degree is exhausted. At
the time the newly connected node finds that a certain node has
residual degree, the newly connected node moves to the node that
has the most residual degree. We show the procedure in Fig.4.
Node 2 uses up its degree because node 8 joined node 2 as its
backup route. Node 2 sends a query to other children, which are
nodes 5, 6 and 7, and they reply hit or fail messages to node 8.
The hit message means it can accept join. The fail message means
it cannot accept. Node 8 moves to the node which has sent the hit
message first. In Fig.4, node 6 sends a hit message to node 8, and

node 8 joins node 6. If all messages of the children are fail, the
newly connected node joins the node which it has received a
message first from. It receives a redirection message from the first
node.
One question in our proposal is that there are the nodes whose
maximum degrees are zero or one. Existence of nodes with zero
degree (receiving only) is a common problem in ALM. Nothing
could be done but they are treated as a leaf node in the overlay
tree. This is similar to the case of an incentive approach adopted
by recent P2P file sharing system like BitTorrent[16]. Handling of
the nodes which have one maximum degree is a specific problem
in our proposal, because we construct the redundant overlay tree
by forcing reserved one degree in each node. A node of one
degree can not have a child node. In the case that the maximum
degrees of the all children of a node are one, our proposal cannot
construct a subtree rooted at the children, so the tree can not be
constructed effectively. In the worst case that the maximum
degrees of the all children of the root node are one, our proposal
can not construct the tree any more. To avoid this case, we allow
the nodes of one maximum degree to have a child although their
degree is one. Another problem is that they cannot provide
backup routes because of exhausting their one maximum degree
or zero maximum degree. We then decide that each node can have
only one node whose maximum degree is one or zero, and place
the node at the end of the backup spanning tree so that the node
need not provide a backup route. We show this case in Fig.5.
Node 2 is a parent of three children, which are node 3, 4, and 5.
The maximum degree of node 5 is one. We place the node 5 at the
end of the spanning tree of the backup routes, and node 5 needs
not provide a backup route to other nodes. Finally, all the children
nodes can get their backup routes.

4. PERFORMANCE EVALUATION
We evaluate the performance of our proactive approach using
simulations and software implementations. We are mainly
interested in the resilience performance, how fast the overlay tree
can be reconstructed and how small the control overheads can be
kept by redundant backup routes. We compare our proactive
method with a reactive method which uses grandfather policy
described in Section 2.2. In simulations, we also compare our
method with Yang’s method, which is another proactive method

1

2 3 4

8 5 7

Data flow
Query
Hit or Fail
Join message

6

1

2 3 4

8 5 7

Data flow
Query
Hit or Fail
Join message

6

Fig.4.Reconstruction of a redundant tree

2

3 4 5

Data flow
Backup route

1

degree 1degree 3degree 4

2

3 4 5

Data flow
Backup route

1

degree 1degree 3degree 4

Fig.5. Treating a node of one or zero maximum degree

53

described in Section 2.3. We show simulation results in Section
4.1 and implementation results in Section 4.2.

4.1 Simulation Results
We carried out the simulations by ns-2[17]. We show simulation
results in Figs 7, 8, 9, 10.and 11. Our simulation topology has 24
routers. Four routers of them are domain-to-domain routers as
shown in Fig.6. The others are set up at random between end-
hosts. The distance between two end-hosts is the sum of link
delays on the shortest path between them. The delay and
bandwidth between the domain routers is 100ms and 100Mbps.
The delay between the routers in a domain varies from 10 to 50
ms and the bandwidth is 100Mbps. The delay and bandwidth
between a router and end-hosts are 10ms and 10Mbps. The nodes
randomly connect to one of the 20 routers except the four inter
domain routers. The total number of nodes varies from 25 to 200.
The link latency varies from 10ms to 100ms. The maximum
degree of each node varies from 1 to 6. For the experiment in
Fig.11, we fixed the degree of each host at a particular value. The
overlay tree is constructed first by all hosts, and then nodes
randomly join and leave the overlay tree every 15 seconds for 300
seconds.

4.1.1 Comparison of Recovery Time
First, we use the average recovery time as a performance measure.
It is the average time for an affected node to find a new parent.
Fig.7 plots the average recovery time of leave and failure in
simulations. Each node send heartbeat message every one second.
If a node does not receive any heartbeat messages from its
connected nodes for one second, it decides that the nodes have
become failure.
In Fig.7, the average recovery time against node leaving in the
reactive approach is about 1300ms in each number of nodes. The
average recovery times against node leaving in proactive method
(our proposal and Yang’s approach) are less than about half of the
reactive method, about 500ms. In case of node failures, as the
number of nodes increases, the average recovery time of the
reactive approach becomes larger. The average recovery time of
our proposal and Yang’s approach are about 1400ms.
The proactive methods enable the affected nodes to immediately
connect to their backup routes. This is common to both proactive

router

client100Mbps

10-50ms

10Mbps

10ms 100Mbps

100ms

router

client100Mbps

10-50ms

10Mbps

10ms 100Mbps

100ms

Fig.6. Simulation topology

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200

re
co

ve
ry

 ti
m

e(
m

s)

number of nodes

reactive leave
yang's leave

proposal leave
reactive failure

yang's failure
proposal failure

Fig.7. Average recovery time with varying number of nodes
in simulation

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200

 o
ve

rh
ea

d(
K

B
)

number of nodes

reactive
yang's

proposal

Fig.8. Overhead of the round robin method with varying
number of nodes in simulation

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200

ov
er

he
ad

 (K
B

)

number of nodes

reactive
yang's

proposal

Fig.9. Overhead of the round trip time method with varying
number of nodes in simulation

54

methods, so their results are nearly equal. On the contrary, in the
reactive approaches, requests may be rejected by the contacted
node due to degree constraint and redirection is repeated until the
request is accepted. Especially in the node failure cases, affected
nodes have to contact to the root in the reactive approach. As the
number of nodes increases from 25 to 200, the recovery time of
the reactive approach increases. This is because the height of an
overlay tree becomes bigger, and many redirections happen.

4.1.2 Comparison of Control Overheads
We show the overheads of the reactive approach, Yang’s
approach and our proposal. The overhead is a total number of
control packets to maintain the overlay tree.
For the reactive approach, the control overhead comes from the
control messages exchanged for the affected nodes to find new
parents. We experimented with two redirection methods; a round
robin method and a round trip time method. In the round robin
method, when a node whose degree is exhausted receives a join
message from a newly joining node, the node redirects the
message to each of its children in order. In the round trip time
method, when a node whose degree is exhausted receives a join
message from a newly joining node, the node sends its children
list to the newly joining node. Then the newly joining node
measures the round trip times between each node on the list and
itself. After that the newly joining node sends a join message to
the smallest round trip time node. The round trip time method
uses more packets than the round robin method, but the overlay
tree is optimized to be low latency.
For the proactive method, the control messages consist of two
parts. 1) Similar to reactive approaches, control messages are
exchanged for the children of departure nodes to find their new
parent, though we may need fewer steps in the proactive approach.
2) In addition, every non-leaf node exchanges information for
deciding a backup route.
Fig.8 compares the overheads of the round robin method with
redirection. The number of nodes varies from 25 to 200 in
simulations. In Fig.8, we can see Yang’s proactive approach
generates higher overhead than others. In comparison with Yang’s

approach, our proactive approach suppresses the overhead. The
reactive approach is the smallest in this respect, because the
proactive approaches need to exchange information to decide
backup routes. Furthermore, the round robin method for
redirection does not generate so many packets.
Fig.9 compares the overheads of the round trip time method for
redirection. The number of nodes varies from 25 to 200 in
simulations. In the reactive approach, as the number of nodes
increases, the overhead increases a lot. This is because as the
number of nodes increases, more redirection is required.
Redirection generates a volume of overheads to measure RTT.
As shown in Fig.8 and Fig.9, our proposal does not generate
packets as many as Yang’s approach for holding backup routes.
Holding a backup route operation of our proposal needs fewer
packets than Yang’s approach. The redundant overlay tree
structure of our proposal enables this. When changes of the tree
structure happen by join, leave or fail, the nodes have to update
the backup routes. As the session continues long time and many
nodes join the session, the difference of the overheads between
our proposal and Yang’s approach will be larger. In Fig.8,
overheads of Yang’s approach and our proposal are larger than
the reactive approach, but in Fig.9, the reactive approach
generates more packets than the proactive approaches. In the case
that nodes exchange much information in redirection and many
nodes join the session, the reactive approach is not useful. In most
ALM protocols, each node joins the overlay tree following their
own metric. This means that nodes exchange a lot of information
to optimize the overlay tree in join and redirection process. ALM
is also used in media streaming, where many people participate in
the ALM session. Consequently, the proactive methods are more
suitable for ALM than the reactive approaches in terms of
overhead. Furthermore, our proposal generates fewer packets than
Yang’s proactive approach for ensuring backup routes. Among
the proactive approaches, our proposal can save bandwidth most.

4.1.3 Comparison of Data Delivery Delays
Proposed redundant overlay tree simplifies a backup route search
and contributes to overhead reduction. However, that structure
causes the height of the overlay tree to be larger and possibly

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

de
la

y(
m

s)

number of nodes

reactive
yang's

proposal

Fig.10. Average delivery delay with varying number of
nodes in simulation

 0

 200

 400

 600

 800

 1000

 2 3 4 5 6 7 8 9

de
la

y(
m

s)

degree

reactive
yang's

proposal

Fig.11. Average delivery delay with 200 nodes with varying
number of degree

55

leads to delay increase overall, because all nodes do not use their
degree full. Therefore, an obvious problem of our approach is
increase in data delivery delays. Fig.10 shows how the average
transfer latency in the tree varies the number of nodes from 25 to
200 in simulations.
In Fig.10, we can see that the average delivery delay of our
proposal is larger than other methods. This means that hop counts
increase in our proposal. Next, we show an interesting result in
Fig.11. Maximum degree of all nodes is fixed at the same number
when the number of nodes is 200. Fig.11 shows the average
delivery delay in each maximum degree. When the degree is fixed
at three, delay of our proposal is largest. However, as the degree
number increases, the difference between our proposal and the
others becomes quite small. The average transfer latency of our
proposal is about 380ms like other methods when degree is fixed
at 6, 7 and 8. We can recognize that, as the degree of node
becomes larger, the difference between our proposal and the
others becomes smaller. This is because larger degree contributes
to reducing the overlay tree height. They lead to reduction of
delay in the resilient overlay structure. Increasing maximum
degree is not easy, but it is possible in an application of low bit

rate multimedia. What is more, we do not think that the difference
of the delivery delays between our proposal and others is so
critical in such a case of one-way streaming application.

4.2 Implementation Results
In addition to simulations, we implemented the prototype of the
reactive approach and our proposal with C++ on Windows XP.
Video codec is ITU-T H263+. Maximum degree of each node is
fixed at 3. Total 25 nodes are deployed over three different
networks and each network connects to the backbone in Japan.
We can expect the backbone to have high bandwidth, so we have
to consider the backbone with low bandwidth in future work. We
will describe about this in Section 5. Firstly in the experiment, the
source node waits for joining nodes. After the source node
receives a join message, it starts sending the data flow of a media,
encoding the media captured from the capture card in real time.
When the source node exhausts its degree, it redirects the next
joining node to its children. All nodes join the ALM session, and
then each node joins or leaves randomly for 30 minutes. We show
implementation results in Figs.12, 13, 14 and 15.

 0

 200

 400

 600

 800

 1000

reactive proactive

re
co

ve
ry

 ti
m

e(
m

s)

Fig.12. Average recovery time with 25 nodes in
implementation

 0

 100

 200

 300

 400

 500

 10 15 20 25 30

ov
er

he
ad

 (K
B

)

number of nodes

reactive
proposal

Fig.13. Overhead of the round robin method with 15 and 25
nodes in implementation

 0

 100

 200

 300

 400

 500

 10 15 20 25 30

ov
er

he
ad

(K
B

)

number of nodes

reactive
proposal

Fig.14. Overhead of the round trip time method with 15 and
25 nodes in implementation

 0

 20

 40

 60

 80

 100

proactivereactive

de
la

y(
m

s)

Fig.15. Average delivery delay with 25 nodes in
implementation

56

4.2.1 Comparison of Recovery Time
In Fig.12, we show the average recovery time of 25 nodes in
implementation. Recovery time of our proposal is less than half of
the reactive approach. This point is the same as in simulations. As
compared to the reactive approach, we could confirm that the
media playback quality of our proposal was much better than the
reactive approach when node departures happen. In the reactive
approach, playback was felt like “freeze frame” for a moment, but
in our proposal, decoded pictures continued to play smoothly.

4.2.2 Comparison of Control Overheads
Fig.13 and Fig.14 represent the overheads when the number of
nodes is 15 and 25 in the implementations. In Fig.13, we used the
round robin method with redirection. Overhead of our proposal is
more than that of the reactive approach. This is because the round
robin method does not generate so much overhead in redirection
and our proposal generates overhead for ensuring backup routes.
On the other hand, Fig.14 shows that overhead of our proposal is
almost the same as the reactive approach at 25 nodes. We used the
round trip time method with redirection. As the number of nodes
increases, overhead of the reactive method increases. We can also
see this trend in the simulation result of Fig.9.

4.2.3 Comparison of Data Delivery Delays
Fig.15 shows the average delivery delays in implementation when
the number of nodes in session is 25. The delay of our proposal is
more than the reactive approach. However, in media playback, we
do not feel any difference between our proposal and the reactive
approach. We think this difference is not so critical if we consider
the delay caused by video coding and decoding.

In summary, as shown in the simulations and implementations,
we could confirm that our proposal can recover from node
departures much faster than the reactive approach. Especially, we
confirmed that our proposal could continue to play media
streaming smoothly in implementations. With regard to overheads,
we could reduce them for maintaining backup routes, and our
proposal always generates less overheads than Yang’s approach.
In the specific case, our proposal can achieve less overheads than
the reactive approach. About the transfer delay, our proposal is
more than other methods, but we did not feel critical difference
between our proposal and the reactive approach in playback. We
realize our approach can resolve the problems of node departures
and overheads while maintaining backup routes efficiently.

5. Concluding Remarks
We presented a novel method of proactive route maintenance for
ALM with the redundant overlay tree. It enables fast recovery
from node departures and reduction of control overheads. In
comparison with the reactive approach and Yang’s proactive
approach, the recovery time of our proposal is much faster than
the reactive approach, and as fast as Yang’s proactive approach.
In implementations, the recovery time of our proposal is faster
than reactive approach. We also realized that media playback
quality of our proposal was much better than the reactive
approach when node departures happen. Control overhead of our
proposal is less than Yang’s approach and, in the specific case it
is less than the reactive approach. Although the data delivery

delay tends to be larger than other methods, the difference from
other methods becomes smaller as the degree increases.
In future work, the implementation should be experimented in
different environment which has bottleneck or large delay links.
We will use NIST Net, which is a linux based network emulator
[18]. NIST Net can emulate the critical end-to-end performance
characteristics imposed by various wide area network situations,
so we can set end-to-end delays and bandwidths. We will obtain
more extensive results.

6. Acknowledgments
This research was supported in part by the NICT R&D project
"Broadcast System Using Communication Network" and Grants-
in-Aid for Scientific Research of the Ministry of Education of
Japan on "Stream Caching for New Generation Content Delivery
Networks and its Ubiquitous Extension."

REFERENCES
[1] S. Deering, “Host Extension for IP Multicasting,” RFC 1112,

Aug. (1989)
[2] Y. Chu, S. G. Rao, H. Zhang, “A Case for End System

Multicast,” in Proceedings of ACM SIGMETRICS 2000,
June. (2000)

[3] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel, “ALMI: An
Application Level Multicast Infrastructure,” 3rd USENIX
Symposium on Internet Technologies and Systems, Mar.
(2001)

[4] Y. Chawathe, S. McCanne, E. Brewer, “Scattercast: An
Architecture for Internet Broadcast Distribution as an
Infrastructure Service,” PhD Thesis, University of California,
Berkeley, (2000)

[5] P. Francis, “Yoid: Extending the Internet Multicast
Architectuire,” http://www.icir.org/yoid/

[6] J. Jannotti, D. Gifford, K. Johonson, M. Kaashoek, J.
O’Toole, “Overcast: Reliable Multicasting with an Overlay
Network,” 4th Symposium on Operating Systems Design &
Implementation, Oct. (2000)

[7] H. Deshpande, M. Bawa, H. Garcia-Molina, “Streaming Live
Media over Peers,” Technical Report 2002-21, Stanford
University, Mar. (2002)

[8] D. Tran, K. Hua, T. Do, “ZIGZAG: An Efficient Peer-to-
Peer Scheme for Media Streaming,” in proceedings of IEEE
INFOCOM 2003, Apr. (2003)

[9] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, S.
Khuller, “Construction of an Efficient Overlay Multicast
Infrastructure for Real-time Applications,” in proceedings of
IEEE INFOCOM 2003, Apr. (2003)

[10] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan,
“Resilient multicast using overlays,” in proceedings of ACM
SIGMETRICS 2003, June. (2003)

[11] M. Yang, Z. Fei, “A Proactive Approach to Reconstructing
Overlay Multicast Trees,” in proceedings of INFOCOM
2004, March. (2004)

57

[12] Y.Chu, S. G. Rao, S. Ses, H.Zhang, “Enabling Conferencing
Applications on the Internet using an Overlay Multicast
Architecture” in proceeding of ACM SIGCOMM 2001, Aug.
(2001)

[13] S. Y. Shi, J. S. Turner, M. Waldvogel, “Dimensioning Server
Access Bandwidth and Multicast Routing in Overlay
Networks” in proceeding of NOSSDAV 2001, June. (2001)

[14] S. Banerjee, B. Bhattacharjee, and C kommareddy, “Scalable
application layer multicast,” in proceedings of ACM
SIGCOMM 2002, Aug. (2002)

[15] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A.
Rowstron, and A. Singh, “Splitstream: high-bandwidth
multicast in cooperative environments” in proceeding of
SOSP 2003, Oct.(2003)

[16] Bram Cohen, “Incentives Build Robustness in BitTorrent”
2003. http://bittorrent.com/bittorrentecon.pdf

[17] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns
[18] The Network Emulator Nist Net,

http://snad.ncsl.nist.gov/itg/nistnet/

58

