
Improvement of RTT-Fairness in Hybrid TCP
Congestion Control

Kazumine OGURA, Tomoki FUJIKAWA, Su ZHOU, and Jiro KATTO
Dept. of Computer Science Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan
{ogura, katto}@katto.comm.waseda.ac.jp

Abstract—This paper presents TCP-Fusion supporting RTT
(Round Trip Time) fairness in addition to throughput efficiency
and friendliness to TCP-Reno. When multiple TCP flows having
different RTT values compete, more bandwidth is unfairly
allocated to the flow having smaller RTT. This means that a user
with longer RTT may not be able to obtain sufficient bandwidth
by the current methods. On the other hand, recent studies on the
TCP congestion control to achieve RTT fairness and throughput
efficiency are evolving actively. An example for RTT fairness is
TCP-Libra and an example for throughput efficiency is Hybrid
TCP congestion control. This paper focuses on Hybrid TCP
(exploiting residual link capacity when TCP-Reno drops its rate)
and improves its RTT fairness by incorporating the ideas of
TCP-Libra (congestion window increase in proportion to square
of RTT) to its loss mode. Experiments are carried out to validate
the proposed method and much better performances in RTT
fairness and throughput are provided against conventional
methods.

Keywords-component; TCP; RTT-fairness; Hybrid

I. INTRODUCTION
TCP (Transmission Control Protocol) is widely used in

current network and provides end-to-end, reliable congestion
control. The majority of data services from web surfing to
HTTP multimedia streaming (like YouTube) in the Internet are
carried by TCP. In principle, an AIMD (Additive Increase and
Multiplicative Decrease) behavior of TCP-Reno’s [1]
congestion avoidance mechanism is widely adopted, of which
equivalent rate can be estimated from observable information
(RTT and packet loss rate) [2,3].

However, since the AIMD mechanism of original TCP-
Reno autonomously determines a sending rate according to the
self-clocking principle, it is well-known that it suffers from
RTT unfairness. Namely, when multiple flows having different
RTT values compete, fair share of bandwidth is impossible
because they increase their congestion windows by their
different paces [3]. As a result, a user joining longer RTT
session may not be able to obtain sufficient bandwidth,
resulting that the user can not connect internet comfortably.

RTT fairness had been focused in many TCP papers such
as TCP-Vegas [4], FAST-TCP [5], CUBIC-TCP [6], TCP-
Hybla [7] and TCP-Libra [8].

On the other hand, joint improvement of throughput
efficiency and inter-protocol friendliness to TCP-Reno had
been focused in Compound-TCP [9], Adaptive-Reno [10],
TCP-Illinois [11], YeAH-TCP [12] and our TCP-Fusion [13],
some of which also refer to RTT fairness. They are called
Hybrid TCP congestion control because they switch two modes,
loss-based mode and delay-based mode, according to network
conditions.

In this paper, we try to develop congestion control
algorithms supporting both of RTT-fairness and throughput
efficiency. Initially to improve throughput efficiency, we apply
the idea of TCP-Fusion congestion control we had proposed
[13]. Then, to achieve RTT fairness, we focus on incorporation
of the idea of TCP-Libra to manage its congestion window
increase in the loss mode.

This paper is organized as follows: Section II presents
research backgrounds. Section III presents our proposal.
Section IV demonstrates experimental results. Finally, Section
V provides conclusions of this paper.

II. RESEARCH BACKGROUNDS
Firstly, the AIMD congestion control is introduced as a

typical congestion control algorithm. Secondly, we introduce
our TCP-Fusion as an example of the Hybrid TCP. Finally, we
describe TCP-Libra which fulfills RTT-fairness by its window
increase mechanism.

A. AIMD Congestion Control
A window increase rate of the AIMD congestion controls

based on TCP-Reno is proportional to RTT values in principle.
For example, [14] provides an analytical result of RTT
unfairness of the AIMD congestion controls, in which
throughput ratio of two TCP flows having different RTT values
is given by

d
d

RTT
RTT

w
w −









∝

1

2

1

2

1 (1)

where wi is an average congestion window size of flow i
(i=1,2), RTTi is an average RTT of flow i, and d is a constant
which is determined by the congestion control mechanisms (e.g.
d is 0.5 for TCP-Reno and BIC-TCP, 0.82 for High-speed TCP
and 1.0 for Scalable TCP).

B. TCP-Fusion
TCP-Fusion [13] is one of Hybrid TCP, which has been

originally proposed to achieve higher efficiency in fast long-
distance network while still maintaining inter-protocol
friendliness to TCP-Reno.

1) Congestion Window Reduction.
TCP-Fusion adopts optimization of the decrease parameter

based on TCPW-RE (Rate Estimation) [15] to improve
efficiency particularly in the leaky pipe. In TCPW-RE, the
decrease parameter after a loss can be expressed as RTTmin/RTT
[16], where RTTmin and RTT are the minimum RTT and the
RTT right before the packet loss, respectively. This equation
indicates that TCPW-RE reduces its congestion window size to
AR (Achieved Rate) [17] to clear the router buffer and, as a
result, it improves throughput efficiency against TCP-Reno.
Thus, congestion window reduction of TCP-Fusion is
implemented as follows;

)
2

 ,max(min last
lastnew

cwnd
cwnd

RTT
RTT

cwnd = (2)

where cwndnew and cwndlast are congestion window sizes
right after and before the packet loss, respectively.

2) Congestion Window Increase.
Similar to TCP-Vegas, TCP-Fusion has three phases;

increase phase, decrease phase, and steady phase, which are
switched by a number of packets in the bottleneck queue (diff).
The diff can be estimated as;

()
RTT

RTTRTTcwnddiff min−
= (3)

Using the diff, congestion window increase of TCP-Fusion is
carried out by

cwndrenocwndcwndrenocwnd
cwnd

diffcwnddiffcwnd
diffcwndWcwnd

cwnd

new

last

lastlast

lastinclast

new

_ if ,_
 otherwise ,

*3 if ,/)(
 if ,/

new <=








>+−+

<+

=

αα
α

(4)

Congestion window

Network capacity(Link capacity+Buffer)

Buffer(<BDP)

BDP/2

Time

Residual capacity

cwndloss

cwndloss/2

AR

Reno

Hybrid
TCPdelay_mode loss_mode

Figure 1. Comparison of congestion window behaviors of TCP-Reno and
TCP-Fusion

where cwndnew, cwndlast and reno_cwnd are the congestion
window sizes after and before update and of an equivalent to
TCP-Reno, respectively. α is the lower bound threshold to
switch three phases. Winc is the increment parameter to increase
congestion window size rapidly. The congestion window
behavior of TCP-Fusion is like Fig. 1 when TCP-Fusion and
TCP-Reno compete with a buffer size less than BDP.

C. TCP-Libra
Let α and β be window increase rate and window decrease

rate, respectively. Then, an average sending rate of the
conventional AIMD protocol like TCP-Reno is given by

p
p

RTT
RAIMD

−
⋅=
11

β
α (5)

where R is an average sending rate and p is an average
packet loss rate (α is 1 and β is 0.5 for TCP-Reno). TCP-Libra
[8] defines RTT0 and RTT1 to be constants which satisfy (RTT0,
RTT1 >> RTT) and γ to be a parameter of RTT (which is
assumed to be a constant in this paper), and let α and β be

0

2

0

2

RTT
RTT

RTTRTT
RTT

⋅≈
+

⋅= γγα (6)

() 2
1

2 0

1 ≈
+

=
RTTRTT

RTTβ (7)

Different from the conventional AIMD mechanism, TCP-
Libra weights α to be proportional to square of RTT. Then, an
average sending rate of TCP Libra is provided by

p
p

RTT
RLibra

−
⋅=
12

0

γ (8)

Since RTT0 is a constant, R becomes constant irrespective
of different RTT values (i.e. RTT fairness).

III. PROPOSALS
We propose TCP-Fusion with RTT fairness capability by

applying TCP-Libra’s window increase mechanism into the
TCP-Fusion’s loss_mode which operates when there is no
residual capacity as mentioned above. Except for this, proposed
congestion control is equal to TCP-Fusion.

A. TCP-Fusion with RTT Fairness
We consider the case that a TCP-Reno flow and a proposed

TCP flow having different RTT values are competing. When
there exists residual capacity before the TCP-Reno flow
reaches AR, the proposed TCP flow operates in delay_mode
and puts the constant number of packets into a router buffer
which is expected to be RTT fair (as long as estimated AR is
RTT fair). Therefore, we can focus on loss_mode when packet
buffering starts. In this phase, original TCP-Fusion carries out
sending rate increase by 1MSS/RTT which is same as TCP-
Reno. Since TCP-Libra modifies its window increase rate α to
be proportional to RTT2, we can modify it to k ·RTT(i)2 and
achieve

() () () ()()
() ()()

() ()()
() ()()iRTTiRTT

iRTTkiR
iRTTiRTT

iRTTkiRTTiRiR

/1

1
2

∆+
⋅+

=

∆+
⋅+×

=+
 (9)

where R(i) is a sending rate of the i-th RTT round, and k is
a tunable parameter corresponding to RTT of the competing
TCP-Reno flow as discussed later. Since we can assume RTT(i)
>> ΔRTT(i), (9) can be approximated by

() () ()iRTTkiRiR ⋅+≈+1 (10)

This indicates that the rate is increased by k ·RTT(i) per
RTT(i) second, which means that k ·RTT(i) / RTT(i) = k packets
are sent per unit time without depending on RTT.

IV. EXPERIMENTS
We carried out simulation evaluations using ns-2 [18]. Fig.

2 shows simulation topology used in the experiments. There
are n-flows shared in the bottleneck bandwidth. Sender i
communicates with receiver i (i=1,2,… ,n). Each sender is
connected to 1Gbps link of which propagation delay is Di. Di is
varied respectively according to RTTi. Each receiver is
connected to 1Gbps link with 1ms propagation delay. Link
speed and propagation delay of a shared (bottleneck) link are
100Mbps and 1ms, respectively. The router buffer size is equal
to the BDP. In our proposal, parameter k in (9) is set to
1/(0.04)2 which assumes RTT of a competing TCP-Reno flow
is 40ms.

A. Efficiency
Fig. 3 shows the throughput of a single TCP flow. For the

network simulation setting, RTT is 40ms and random loss rate
is varied from 10-6 to 10-1. Our proposal is same as TCP-Fusion
in this situation. All kind of TCP variant flows can utilize
nearly the link bandwidth when the loss rate is smaller than 10-

5 and degrade its throughput as the loss rate increases. Among
of them, Proposal, ARENO, and FAST are more efficient and
robust in this lossy link than others. This is because they can
update their windows aggressively when there exists residual
capacity caused by packet loss. Incidentally, in case of TCP-
Libra which we tentatively set γ assuming the parameter of
RTT as 40[ms], TCP-Libra behaves same as TCP-Reno.

sender 1

sender 2

sender n

receiver 1

receiver 2

receiver n

1[Gbps]
Di[ms]

100[Mbps]
1[ms]

1[Gbps]
1[ms]

Figure 2. Simulation topology

0

20

40

60

80

100

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

Th
ro

ug
hp

ut
[M

bp
s]

Packet loss rate

Fusion
(=Proposal)
YeAH

AReno

CTCP

FAST

Reno

Figure 3. Throughput of a single TCP flow with different packet loss rates

B. Intra-Protocol Fairness
In this subsection, we focus on intra-protocol fairness when

multiple flows with different RTTs are competing, and
evaluate performance differences of two queuing mechanisms
at a router; Drop Tail (DT) and Random Early Detection
(RED) [19]. RED can detect congestion before the buffer
overflows by dropping or marking packets with a probability
that increases with the queue length. The objectives are an
equitable distribution of packet loss and reduction of delay
variation.

For the experiments, we simulate four TCP flows of the
same congestion control having different RTTs and evaluate
their RTT fairness. Compared congestion controls are TCP-
Reno, TCP-Fusion and our Proposal. We set RTTi as shown in
Table I. The router buffer size in this simulation is equal to
BDP of setting 100ms RTT.

Fig. 4 shows throughput behaviors of each protocol in case
of DT. This figure indicates that, in case of TCP-Reno and
TCP-Fusion, smaller RTT flows (RTT1 and RTT2) utilize the
link capacity larger than longer RTT flows (RTT3 and RTT4) as
expected. However, in case of our Proposal, only RTT2 flows
dominate the link capacity, and the others show similar
behaviors each other. Different from expectation, the relation
between RTT values and bandwidth utilization is out of order.
We then evaluate the number of packets lost during this
simulation, which is shown in Table II. This table indicates that
the dominating flow (i.e. 50ms flow) seldom suffers from
packet losses compared to the others. This reason is not hard to
see. Once one or more flows dominate the link capacity, it is
too hard for other flows to take the link capacity as long as
router buffer size is large and DT policy is applied (few
opportunities to steal the bandwidth).

TABLE I. RTT PARAMETERS USED IN THE SIMULATION

RTTi RTT1 RTT2 RTT3 RTT4

RTT[ms] 40 50 80 100

0

10

20

30

40

50

60

70

80

90

100 150 200

Th
ro

ug
hp

ut
[M

bp
s]

Time[s]

40ms

50ms

80ms

100ms

(a) TCP-Reno

0

10

20

30

40

50

60

70

80

90

100 150 200

Th
ro

ug
hp

ut
[M

bp
s]

Time[s]

40ms

50ms

80ms

100ms

(b) TCP-Fusion

0

10

20

30

40

50

60

70

80

90

100 150 200

Th
ro

ug
hp

ut
[M

bp
s]

Time[s]

40ms

50ms

80ms

100ms

(C) Proposal

Figure 4. Throughput behaviors in the DT case when four TCP flows of
different RTT values share a bottleneck link

TABLE II. PACKET LOSS COUNTS IN THE DT CASE WHEN FOUR TCP
FLOWS OF DIFFERENT RTT VALUES SHARE A BOTTLENECK LINK

RTT[ms] 40 50 80 100 Total
Proposal 79 6 70 135 290
Fusion 14 1 7 6 28
Reno 7 2 4 9 22

On the other hand, Fig. 5 shows throughput behaviors of
each protocol when RED is applied at a router. This figure
indicates that, in case of TCP-Reno and TCP-Fusion, smaller
RTT flows utilize larger bandwidth than longer RTT flows.
The relation between RTT values and bandwidth utilization is
also in order. Then, in case of our Proposal, all flows with

different RTTs approximately utilize the link capacity in the
same rate. Table III shows that the situation like Table II does
not happened. This is because RED provides more
opportunities for non-dominant flows to steal bandwidth from
dominant flows than DT when multiple flows with different
RTTs are competing.

0

10

20

30

40

50

60

70

100 150 200

Th
ro

ug
hp

ut
[M

bp
s]

Time[s]

40ms

50ms

80ms

100ms

(a) TCP-Reno

0

10

20

30

40

50

60

70

100 150 200

Th
ro

ug
hp

ut
[M

bp
s]

Time[s]

40ms

50ms

80ms

100ms

(b) TCP-Fusion

0

10

20

30

40

50

60

70

100 150 200

Th
ro

ug
hp

ut
[M

bp
s]

Time[s]

40ms

50ms

80ms

100ms

(c) Proposal

Figure 5. Throughput behaviors in the RED case when four flows of
different RTT values share a bottleneck link

We use the variance to evaluation of the RTT-fairness
degree, which is calculated by

()∑
=

−=
n

i
i xx

n
Variance

1

21 (11)

where xi is the throughput of the i-th flow and n is the
number of flows(is equal to 4 in this case). x is the average
throughput taken by the four flows. The result is presented in

Fig. 6 which shows the statistical result changing the start time
of each flow. As this figure indicates, our proposal is much
better than the other protocols in respect of RTT-fairness
because the variance of proposal is lower than the others.

TABLE III. PACKET LOSS COUNTS IN THE RED CASE WHEN FOUR TCP
FLOWS OF DIFFERENT RTT VALUES SHARE A BOTTLENECK LINK

RTT[ms] 40 50 80 100 Total
Proposal 124 131 149 167 571
Fusion 71 71 40 24 206
Reno 36 35 27 16 114

TABLE IV. FAIRNESS INDEX IN THE RED CASE WHEN FOUR TCP FLOWS
OF DIFFERENT RTT VALUES SHARE A BOTTLENECK LINK

Proposal Fusion Reno
FI 0.997487 0.811747 0.833822

0

20

40

60

80

100

120

0 5 10 15 20 25

va
ri

an
ce

the number of trials

Proposal

Fusion

Reno

Figure 6. RTT-fairness staticstical anlysis changing the start time of each
flow

C. Inter-Protocol Fairness
The purpose of this subsection is to inspect inter-protocol

fairness with TCP-Reno. The throughputs of TCP-Reno having
constant RTT (=40ms) are shown in Fig. 7 along with those of
the competing flows (Reno, Fusion or Proposal) having
different RTTs. Since the preceding subsection suggests that
RED is more suitable than DT to achieve RTT fairness by the
Proposal, this experiment also uses RED.

Fig. 7 (a) shows throughputs of two TCP-Reno flows. The
figure indicates that the throughput is fair only when both of
RTTs are same. When RTT of the competing flow becomes
longer, its bandwidth utilization becomes smaller.

In Fig. 7 (b), we notice that TCP-Fusion utilizes larger
bandwidth than TCP-Reno because of its throughput efficiency.
TCP-Fusion with smaller RTT achieves more bandwidth but
this does not mean its unfriendliness. It can be explained that
TCP-Fusion in delay_mode can utilize residual capacity, which
is caused by packet losses from the TCP-Reno flow. Though
the router buffer size is equal to BDP, RED contributes to
causing residual capacity (packet losses happen before the

number of buffered packets reaches BDP). In case of DT,
though the results are omitted here, TCP-Fusion doesn’t
dominate bandwidth when RTTs of TCP-Reno and TCP-
Fusion are the same.

Finally, Fig. 7(c) reveals that throughputs of the proposal is
almost constant in spite of varying RTT. There might be a
criticism that the proposal provides bandwidth to TCP-Reno
when RTT is small and expels TCP-Reno when RTT is large.
However, this is not true and can be explained as follows. Our
proposal operates in delay_mode when residual capacity exists
and achieves throughput gains against the competing TCP-
Reno flow without causing unfriendliness. When packet
buffering starts at a router buffer, our proposal operates in
loss_mode and shows inter-protocol friendliness.

0

20

40

60

80

100

20 30 40 50 60
Th

ro
ug

hp
ut

[M
bp

s]

RTT

Reno
(=40ms)

Reno

(a) TCP-Reno

0

20

40

60

80

100

20 30 40 50 60

Th
ro

ug
hp

ut
[M

bp
s]

RTT

Reno
(=40ms)

Fusion

(b) TCP-Fusion

0

20

40

60

80

100

20 30 40 50 60

Th
ro

ug
hp

ut
[M

bp
s]

RTT

Reno
(=40ms)

Proposal

(c) Proposal

Figure 7. Throughputs of a TCP-Reno flow of RTT = 40ms when it
competes with other TCP protocol flows having different RTTs.

V. CONCLUSION
This paper presents improvement of TCP-Fusion to achieve

RTT fairness while keeping high throughput efficiency and
inter-protocol friendliness with TCP-Reno. Simulation results
validate our proposal against conventional TCP-Reno and
TCP-Fusion. As future work, we will further try to inspect
inter-protocol friendliness to TCP-Reno in Fig. 7. In this
experiment, we assumes constant k in (10). However, this value
has to be changed in an adaptive manner according to
competing TCP-Reno flows having various RTTs. For this
purpose, we should develop an automatic estimation method of
RTT of competing TCP-Reno flows.

REFERENCES
[1] W. Richard Stevens: "TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms," IETF RFC 2581, 1997.
[2] S.Floyd and K.Fall, “Promoting the Use of End-to-end Congestion

Control in the Internet,” IEEE/ACM Transactions on Networking, Vol. 6,
Aug.1999.

[3] J.Padhye, V.Firoiu, D.Towsley, and J.Kurose: “Modeling
TCPThroughput: A Simple Model and its Empirical Validation,” ACM
SIGCOMM 1998, Sept. 1998.

[4] L.S.Brakmo and L.L.Peterson: “TCP Vegas: End-to-End Congestion
Avoidance on a Global Internet,” IEEE Journal on Selected Areas in
Commun., Vol. 13, No.8, pp.1465-1480, Oct.1995.

[5] C.Jin, D.X.Wei and S.H.Low: “FAST TCP: Motivation, Architecture,
Algorithms, Performance”, IEEE INFOCOM 2004, Mar.2004.

[6] I.Rhee and L.Xu: “CUBIC: A New TCP-Friendly High-speed TCP
Variant”, PFLDnet 2005, Feb.2005.

[7] C.Caini and R.Firrincieli, “TCP Hybla: A TCP Enhancement for
Heterogeneous Networks”, Int. J. Satell. Comm. Network,
Vol1.22,pp.547-566, Sep.2004.

[8] G .Marfia et al.: “TCP-Libra: Exploring RTT Fairness for TCP,” UCLA
Comp. Science Dept. Tech. Report # UCLA-CSD TR-050037.

[9] K.Tan. J.Song, Q.Zhang, and M.Sridharan: “Compound TCP: A
Scalable and TCP-Friendly Congestion Control for High-speed
Networks”, PFLDnet 2006, Feb.2006.

[10] H.Shimonishi, T.Hama and T.Murase: “TCP-Adaptive Reno for
Improving Efficiency-Friendliness Tradeoffs of TCP Congestion
Control Algorithm”, PFLDnet 2006, Feb.2006.

[11] S.Liu, T.Başar and R.Srikant. “TCP-Illinois: A Loss and Delay-Based
Congestion Control Algorithm for High-Speed Networks”,
VALUETOOLS 2006, Oct.2006.

[12] A.Baiocchi, A.P.Castellani and F.Vacirca: “YeAH-TCP: Yet Another
Highspeed TCP”, PFLDnet 2007, Feb.2007.

[13] K.Kaneko, T.Fujikawa, S.Zhou and J.Katto: “TCP-Fusion: A Hybrid
Congestion Control Algorithm for High-speed Networks”, PFLDnet
2007, Feb.2007.

[14] L. Xu, K. Harfoush and I. Rhee: “Binary Increase Congestion Control
(BIC) for Fast, Long Distance Networks”, in Proc. of INFOCOM 2004.

[15] C.Casetti, M.Gerla, S.Mascolo, M.Y.Sanadidi, and R.Wang: "TCP
Westwood: Bandwidth Estimation for Enhanced Transport over
Wireless Links", In proc. of ACM Mobicom 2001, Jul.2001.

[16] H. Shimonishi, M. Y. Sanadidi, and M. Gerla: “Improving Efficiency-
Friendliness Tradeoffs of TCP in Wired-Wireless Combined Networks”,
In proc. of ICC, 2005.

[17] R.Wang, M.Valla, M.Y.Sanadidi, and M.Gerla: “Adaptive Bandwidth
Share Estimation in TCP Westwood”, IEEE Globecom 2002, Nov.2002.

[18] "ns-2 network simulator(ver.2)," http://www.mash.cs.berkley.edu/ns.
[19] S.Floyd and V.Jacobson: “Random Early Detection Gateways for

Congestion Avoidance”, UEEE/ACM Trans. on Networking, Vol.1,
No.4, pp.397-413, Aug.1993.

	I. Introduction
	II. Research backgrounds
	A. AIMD Congestion Control
	B. TCP-Fusion
	1) Congestion Window Reduction.
	2) Congestion Window Increase.

	C. TCP-Libra

	III. Proposals
	A. TCP-Fusion with RTT Fairness

	IV. Experiments
	A. Efficiency
	B. Intra-Protocol Fairness
	C. Inter-Protocol Fairness

	V. Conclusion
	References

