
IEICE TRANS. COMMUN., VOL.E90–B, NO.10 OCTOBER 2007
2729

PAPER Special Section on New Challenge for Internet Technology and its Architecture

Selective Update Approach to Maintain Strong Web Consistency in
Dynamic Content Delivery

Zhou SU†a), Member, Masato OGURO††, Student Member, Jiro KATTO†, Member,
and Yasuhiko YASUDA†, Fellow, Honorary Member

SUMMARY Content delivery network improves end-user performance
by replicating Web contents on a group of geographically distributed sites
interconnected over the Internet. However, with the development whereby
content distribution systems can manage dynamically changing files, an im-
portant issue to be resolved is consistency management, which means the
cached replicas on different sites must be updated if the originals change.
In this paper, based on the analytical formulation of object freshness, web
access distribution and network topology, we derive a novel algorithm as
follows: (1) For a given content which has been changed on its original
server, only a limited number of its replicas instead of all replicas are up-
dated. (2) After a replica has been selected for update, the latest version will
be sent from an algorithm-decided site instead of from its original server.
Simulation results verify that the proposed algorithm provides better con-
sistency management than conventional methods with the reduced the old
hit ratio and network traffic.
key words: content delivery networks, consistency algorithm, web cache
performance, network traffic

1. Introduction

With the growth in popularity of the Internet and the wide
availability of streaming applications, how to efficiently dis-
tribute the stored content has become a major concern in the
Internet community.

Some content delivery networks (CDN) [3], [4] have
emerged, and they work directly with content providers
to cache and replicate the providers’ content close to the
end users by using geographically distributed edge servers.
More recently, some other researchers have also advocated
using a CDN structure composed of dedicated transit nodes
to distribute the large contents [19].

Although CDNs facilitate static file sharing, newly-
developed applications, such as online auction and remote
collaboration, demand that they should be able to manage
dynamically-changing files. There has been some research
[6], [9], [12], [16], [18] on this problem, which is called con-
sistency management. However, most of these studies treat
different replicas of the same content to be managed for Web
consistency in the same manner. Furthermore, how to opti-
mally select a surrogate instead of an original server to up-
date the content has not been discussed.

Manuscript received January 25, 2007.
Manuscript revised April 23, 2007.
†The authors are with the School of Science and Engineering,

Waseda University, Tokyo, 169-8555 Japan.
††The author is with Nomura Research Institute, Ltd., Tokyo,

100-0005 Japan.
a) E-mail: zhousu@asagi.waseda.jp

DOI: 10.1093/ietcom/e90–b.10.2729

In this paper, we therefore propose an optimal algo-
rithm for controlling Web consistency in content delivery.
Firstly, we carry out a theoretical analysis of the Web ac-
cess and the freshness time of objects. Based on the ana-
lytical result, we then propose a consistency priority and as-
sign different priorities to different replicas of the same con-
tent. When a given content is changed on its original server,
instead of all its replicas over the whole network, only its
replicas with high consistency priorities will be updated.

Secondly, if one replica of a given content is selected
to be updated, the latest version of this content will be sent
from a surrogate with the lowest update priority, which is
proposed based on the network topology and bandwidth.
Therefore, the latest version will be sent from an algorithm-
decided site instead of from its original server to reduce the
network traffic.

Finally, through simulations we check the performance
of our proposal when the related parameters are changed,
and find that our proposal can efficiently improve the hit ra-
tio and network traffic against the previous algorithms. We
also show that the necessary parameters in our proposed al-
gorithm can be obtained from the information readily avail-
able in the local system.

This paper is organized as follows: in Sect. 2, an
overview of the CDN system is provided. In Sect. 3, related
work with regard to consistency management algorithms is
reviewed. Section 4 presents mathematical analyses of Web
access and user delay. And our proposed algorithm is also
presented. In Sect. 5, extensive simulation results are given
and conclusions are presented in Sect. 6.

2. Content Delivery

2.1 Content Delivery Overview

How to efficiently distribute the Web content has attracted
much research. Content delivery networks (CDNs) ap-
peared recently and are deploying quite rapidly [1]–[4],
[10], [13], [14], [17], [29]. Their concern is mainly placed
on efficient delivery of static content, i.e. HTML files and
images. Some CDN companies advocate their support for
the dynamically changed content, but their technical details
are not yet clarified nor verified.

In Peer to Peer (P2P) networks, users can determine
from where different files can be downloaded with the help
of a directory service [7], [11], [24]. Peer-to-peer systems

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

2730
IEICE TRANS. COMMUN., VOL.E90–B, NO.10 OCTOBER 2007

such as Napster [5] depend on little or no dedicated infras-
tructure. There is, however, the implicit assumption that the
individual peers participate for a significant length of time
instead.

Recently, ideas of Overlay Network, where each con-
nection in the overlay is mapped onto a path in the underly-
ing physical network, are being discussed to facilitate both
CDN and P2P. For example, Kazaa [22] organizes the clients
into an overlay P2P network. But the performance of over-
lay changes with time as nodes dynamically join and leave
the system, which is one of the problems to be resolved for
P2P network. [19] proposed a CDN architecture where a set
of intermediaries act as transit nodes (TNs), which organize
themselves into a content delivery network and are used to
replicate and forward data.

2.2 Contribution

In this paper, we propose an optimal algorithm for Web con-
sistency to selectively decide both the replica to be updated
and the surrogate to get the latest version from. The goal is
to improve the user delay caused by the old-versioned data
and to reduce the network traffic caused by delivering the
data in Fig. 1.

In order to do that, two priorities are proposed: One
is consistency priority, which is used to decide whether the
replica should be updated or not. The other is update prior-
ity, which means the priority of node to get the updated data
from.

The consistency priority is proposed by predicting the
access within its update period, based on a theoretical analy-
sis of the Web access and the freshness time of objects. The
update priority is calculated by the reduced delay during the
delivery of the updated contents among surrogates.

How to use them are as follows: Firstly, each replica of
the same content on different surrogates is assigned a con-

Fig. 1 Consistency control in dynamic content delivery.

sistency priority. When the original content is changed on
its original server, instead of all its replicas over the whole
network, only its replicas with higher consistency priorities
than the threshold will be updated. Secondly, if one replica
of a given content is selected to be updated, a surrogate with
the lowest update priority will be selected to provide the
latest version of this content. As a result, the latest version
can be sent from an algorithm-decided site with the reduced
network traffic and user delay.

3. Related Work

In Propagation method, the updated version of a document
is delivered to all copies whenever a change is made to the
document on the origin server. Although the copies always
keep the latest version of the originals by the Propagation,
this method may generate significant levels of unnecessary
traffic if documents are updated more frequently than ac-
cessed.

In Invalidation [6], an invalidation message is sent to
all copies when a document is changed on the origin server.
This method does not make full use of the delivery network
for content delivery and each replica needs to fetch an up-
dated version individually at a later time. Therefore, the
user-delay may get worse if a frequently accessed document
can not be updated on time.

[9] addressed a set of models that capture the character-
istic of dynamic content at the sub-document level in terms
of independent parameters such as the distribution of objects
size, their refresh times and reusability across time.

Cluster Lease [16] was designed to maintain data con-
sistency by propagating server notifications to cluster of
proxies in the content delivery networks. However, how
to reduce the network traffic caused by the propagation be-
tween server and proxies is not mentioned.

[18] proposed a hybrid approach that can generate less
traffic than the propagation approach and the invalidation
approach. The origin server makes the decision of using ei-
ther propagation or invalidation method for each document,
based on the statistics about the update frequency at the ori-
gin server and the request rates collected by all replicas.
However, the algorithm calculates the request times within
a fixed period which is unrelated to the documents’ lifetime.
Moreover, the replicas on different surrogate are carried out
by the same decision even different surrogate has different
access pattern.

Some Web services employ the time to live (TTL)
mechanism [8] to refresh their replicas. However, how to
decide the proper value of TTL is still not resolved.

MONARCH [12] divided Web objects into several
different groups based on object relationships and object
change characteristics. Furthermore, it identifies the rela-
tionships among objects composing a page and used rela-
tionships to keep all objects consistent.

Although assigning different value of M-TTL
(MONARCH-based TTL) to different groups can be a combi-
nation of TTL and MONARCH, how to cooperatively decide

SU et al.: SELECTIVE UPDATE APPROACH TO MAINTAIN STRONG WEB CONSISTENCY
2731

the M-TTL and keep the consistency among replicas stored
in different sites have not been resolved.

We ourselves proposed an integrated pre-fetching and
replacing algorithm for the hierarchical image based on a
cooperative proxy-server model, in which the metadata of
the hierarchical image was used to keep the data consistency
with user-satisfaction [23]. We also presented a scheme
for stream caching by using hierarchically distributed prox-
ies with adaptive segments assignment, in which “segment”
meant a group of pictures [27]. This method clarified ef-
fectiveness of “local-scope” server cooperation (in the net-
work) with per-segment management and discussed how to
reduce the overhead in network.

4. Theoretical Analysis

In this section, we give an analysis of Web consistency over
the Content delivery network. Firstly, in Sect. 4.1 we in-
troduce the notations used in the network model. Secondly,
theoretical analyses of Web access distribution are presented
in Sect. 4.2. Then, based on the analytical results, how to re-
duce user perceived latency is discussed in Sect. 4.3. How
to reduce the computation complexity and get the necessary
parameters are introduced in Sect. 4.4. Finally, The math-
ematically optimized consistency algorithm is proposed in
Sect. 4.5.

4.1 Notations

We assume that each surrogate is located in a different ad-
ministrative domain, such as an autonomous system (AS).
Let λi (bytes/second) denote an aggregate request rate from
clients to the surrogate i (i = 1, 2, . . . , I).

As for the contents, we assume that there are J different
contents in our CDN. A parameter Pj defines the request
probability for content j (i.e., content popularity). Here, Bj

denotes the data size of content j. In this paper we look on
content j as an update object specified by (j). And its origin
server is defined as o(j).

Let Xi, j, be a parameter which takes a binary value of

Xi, j = 1 (if object j is stored on server i)

Xi, j = 0 (otherwise) (1)

Then, we can get a matrix X of which one element is Xi, j,
which represents a placement pattern of contents. In the ma-
trix X, only if content j is available on surrogate i, Xi, j is set
to be 1. Otherwise, it keeps zero. We all know that it is hard
to manage all contents on all surrogates, however, studies
[28] show that the surrogate-popularity shows a Power-Law
distribution, where 80% of the requests to the Web contents
is served by only top 4% most popular surrogates. Further-
more, Web contents also show extremely different popular-
ity according to Zipf-like distribution. Therefore, in a real
system, only a small part of popular Web contents on pop-
ular surrogates need to update their states of X (as its value
can be exchanged according to the coming request), while

other surrogates always keep its Xi, j to be 0. This makes
possible for us to manage the status of X in practical CDN
system.

As for the link between two surrogates, Dm,n(X) means
the shortest distance (hop count) from surrogate m to surro-
gate n under the placement X. And Cm,n denotes the average
bandwidth (per hop) along the above path from surrogate m
to surrogate n. Table 1 presents a list of parameters used in
our network model.

4.2 Definition of Web Access Distribution

Let Λ =
∑
λi be the total request rate from all the domains.

Then, for a given surrogate i, its surrogate popularity can be
given by λi/Λ.

According to the Zipf distribution which the distribu-
tion of Web access follows, the probability that the content
j is requested can be obtained as follows:

Pj =
Ω

rαj
(2)

where Ω, α are parameters of the Zipf distribution, and r j

is the ranking of request times. Therefore, we can get the
probability that a request happens for the content j from sur-
rogate i by:

P(i, j) =
Ω

rαj
· (λi/Λ) =

Ω · λi

rαj · Λ
(3)

Reference [9] shows that the freshness time of objects
follows a Weibull distribution with a CDF:

F(v) = 1 − e1−(av)b
(4)

where v is the freshness time and a and b are constants of
the Weibull distribution. In this case, for content j, the mean
E(v) (called MTTF or MTBF) of the freshness time is given
by:

E(v j) = a
−1/bj

j · Γ
(
1 +

1
bj

)
(5)

where aj, bj are parameters of the Weibull distribution and
Γ(·) is the gamma function.

Table 1 Client workload and model parameters.

2732
IEICE TRANS. COMMUN., VOL.E90–B, NO.10 OCTOBER 2007

Assume the time when content j was updated last time
is t0, j, and during the period from t0, j to (t0, j + E(v j)), there
are WE(v j) total requests happened in the whole CDN system.
The client requests happen according to a Poisson process,
for example, and then the number of requests for content j
from surrogate i within this period can be obtained by:

Ri, j = WE(v j) ·
Ω

rαj
· (λi/Λ) =

Ω · λi ·WE(v j)

rαj · Λ
(6)

If the Ri, j is greater than one, it means at least one re-
quest happens for this object since it has been changed last
time. Then, to avoid sending the invalidation version of the
data, the replica of content j on surrogate i should be up-
dated when the original changes next time. Here, we define
Ri, j as consistency priority, of which usage will be discussed
in Sect. 4.5.

Note that CDN service providers often provide stronger
guarantee mechanisms for content replication to the client
content providers who pay more money. Our proposal can
be extended to satisfy the above requirement by introduc-
ing a price index (PRj). Here, PRj is the price index of the
client who requested the content j. Then, the adjusted re-
quest times can be PRj ∗ P(i, j) and the Eq. (6) will be:

Ri, j = WE(v j) ·
Ω · PRj

rαj
· (λi/Λ)

=
Ω · PRj · λi ·WE(v j)

rαj · Λ
(7)

In the above equation, as the price is introduced, for
the same content with a different price index, the one which
has larger price index PRj (which means the requester pay
more) will have a larger Ri, j, then it will be firstly consid-
ered to be updated. In other words: CDN service providers
can often provide stronger guarantee mechanisms for con-
tent replication to the client content providers who pay more
money.

4.3 Minimization of User Perceived Latency

In this subsection, we make the analysis of network traffic
cause by sending the modified version of a document. Our
goal is to fetch the latest version of the modified document
from an alternative surrogate instead of the original sever to
minimize the user perceived latency.

When a request happens for content j from a given sur-
rogate i where the latest version of content j is not available,
we assume that there are K surrogates where the latest ver-
sion of content j is available except the original server o(j).
Let k(i, j)={1, . . . ,K} represent one of the surrogates storing
latest version of content j, we can get:

K � I & k(i, j) � i

k(i, j) � o(j) & Xk(i, j), j = 1 (8)

where I is the number of servers (i.e. surrogates). These
equations mean that surrogate k(i, j) must be neither the

original server (o(j)) of the request content nor the surro-
gate (i) where this request happened, and it has the replica
of the requested content j (Xk(i, j), j = 1).

Assume that content j is originally stored in server o(j)
and Ck(i, j),i is the average bandwidth (per hop) during the
path from surrogate k(i, j) to surrogate i. Let us denote Qj be
the ratio that the requested content j is not the latest version.
Then, when a request for content j happens at surrogate i
and surrogate k(i, j) sends the latest version to satisfy this
request, the user delay during the delivery from surrogate
k(i, j) to surrogate i is given by

Tk(i, j),i, j(X)=
1
Λ
λi ·Bj ·Pj ·Qj ·Dk(i, j),i(X)/Ck(i, j),i(X) (9)

where Λ =
∑
λi is the total request rate from all the do-

mains. If we continue to define:

G j =
1
Λ
· Bj · Pj · Qj (10)

Uk(i, j),i(X) = Dk(i, j),i(X)/Ck(i, j),i(X) (11)

Eq. (9) becomes as follows:

Tk(i, j),i, j(X) = λi ·G j · Uk(i, j),i(X) (12)

Similarly, if a client sends a request for content j to
surrogate i and original server o(j) sends the latest version
to this client, the user delay during the delivery from server
o(j) to surrogate i is given by

To(j),i, j(X) = λi ·G j · Uo(j),i(X) (13)

For the whole system, if we always let the original
server send the latest version to the surrogate where the re-
quest happens, then the average user delay can be obtained:

To(X)=
∑

i

∑
j

To(j),i, j(X)=
∑

i

∑
j

λi ·G j · Uo(j),i(X) (14)

For the whole system, if a client sends a request for a
given content j at a given surrogate i, and a selected surro-
gate k(i, j) (instead of the original server) sends the latest
version to this client, the user delay is given by:

Tk(X) =
∑

i

∑
j

Tk(i, j),i, j(X)

=
∑

i

∑
j

λi ·G j · Uk(i, j),i(X) (15)

For the surrogate k(i, j) selected when a request hap-
pens for content j from surrogate i, we can calculate the
reduced user delay ∆Tk(i, j) by taking a difference of Eq. (12)
and Eq. (13).

∆Tk(i, j) = G j · λi · (Uo(j),i(X) − Uk(i, j),i(X)) (16)

Here, we define ∆Tk(i, j) as update priority and use this pa-
rameter in our proposal as described in Sect. 4.5.

SU et al.: SELECTIVE UPDATE APPROACH TO MAINTAIN STRONG WEB CONSISTENCY
2733

4.4 Computational Complexity and Related Parameters

Since the scale of CDN is being increased recently, to man-
age all surrogates’ all replicas’ update will cause a great
amount of computational complexity. Therefore, how to re-
duce the computational complexity should be considered.
Fortunately, previous researches [20] showed that the distri-
bution of web requests from a fixed group of users follows a
Zipf-like distribution, where most of web requests to surro-
gates are just for a very small set of objects, for example top
10%. Furthermore, in [28] it had been found that 80% of the
requests to the Web contents is served by only top 4% most
popular surrogates. Therefore, to reduce computation com-
plexity of our algorithm, it is suggested that we only need
to calculate the priorities for popular surrogates and popular
contents.

As for how to get the necessary parameters to carry
out the proposal: in our algorithm, WE(v j) need to be cal-
culated to obtain consistency priority in Eq. (6). The Web
log of CDN keeps the records of the request times when
time goes on. There are some methods for prediction [25],
[26], [32]. If the fresh time E(v j) can be predicted, the total
request times WE(v j) during the period of E(v j) can be ob-
tained. In order to grasp the current update period of the ob-
ject, an auto-regressive (AR) model can be used to predict its
current update period from its past records which are avail-
able as local information in CDN. Besides, the bandwidth
Ck(i, j),i needs to be measured to calculate update priority in
Eq. (12). There are lots of methods to measure the avail-
able bandwidth including some algorithms such as Pathchar
[33], PacketPair [30] and SloPS [31] with a guaranteed ac-
curacy.

4.5 Proposed Algorithm

We present our algorithm as follows:
1. Step1: Scalable Update Selection

When a given content j changes at server o(j), a con-
sistency priority Ri, j will be calculated according to Eq. (6).
For content j’s each replica (Xi, j = 1) over the whole net-
work, only when its consistency priority Ri, j is beyond the
threshold Th, the replica of content j on surrogate i will be
updated. Otherwise, this replica will not be updated until
a new request for content j happens at the site i next time.
Therefore, when a given content j is changed at its original
server, not all its replicas (Xi, j = 1) over all network will be
updated according to the analysis of Web access distribu-
tion.

Here, Th can be decided according the following situ-
ation, for example. If there is one request happened during
the lifetime (from the time of last update to the update this
time) of this content, then we can think this content should
be updated in order to avoid sending the invalid (old) ver-
sion of this content to the user when the request happens. In
other words: this content is worth being updated as it would
be requested once according to the analysis in our algorithm.

So Th can be set to be 1 as an example in the practical view.
2. Step2: Scalable Lowest Delay Update

Assume that there are K (Xk(i, j), j = 1, k(i, j) =
{1, . . . ,K} & K � I) replicas of content j selected to be up-
dated, for each replica at surrogate k(i, j), an update priority
∆Tk(i, j) (i.e. reduced user delay) will be calculated accord-
ing to Eq. (16). The latest version of content j will be sent
from surrogate k(i, j) with the lowest ∆Tk(i, j). Therefore, the
latest version will be sent from an algorithm-decided site in-
stead of its original server resulting in a reduction of the user
delay.

5. Evaluation of Algorithms

In this section numerical results will be presented by simu-
lation experiments to validate the proposed algorithm.

5.1 Simulation Conditions

There are 21 surrogates in our network simulator. As some
studies showed that most communication networks have
Power-Law link distributions [15], [28], where the i’th most
connected node has Ω/rβi neighbors, as for the network
topology, we carry out our proposal under the Power-Law
link distribution.

Because the distribution of web request has already
proved to follow a Zipf distribution, which states that the rel-
ative probability of requests for the i’th most popular page
is proportional to Ω/rαi , the access frequency is decided by
this Zipf distribution with a Zipf parameter 0.72 [20], [21].

About the contents, there are 1000 different objects.
We assume that the average size of objects is 10 KBytes
and the size of an invalidation message for each object is
100 Bytes [18]. The threshold of the consistency priority in
our algorithm is 1.

Client requests arrive according to a Poisson process.
All clients are always redirected to the closest server with-
out failure of request routing. The update rate of a given
object is decided at random. The total request times in the
simulations are 800000.

There are five replication algorithms we will study:

• Propagation Policy
• Invalidation Policy [6]
• Hybrid Policy [18]
• M-TTL Policy
• Proposal

To evaluate different algorithms, we use two perfor-
mance measures. One is traffic generated during the process
of sending a latest version of a given content. The other is
Old Hit, which is the percentage of objects are invalid (not
the latest version) when a request arrives at the replica.

5.2 Simulation Results

Figure 2 shows the result of Old Hit, which means that the

2734
IEICE TRANS. COMMUN., VOL.E90–B, NO.10 OCTOBER 2007

Fig. 2 Status of the content and surrogates.

Fig. 3 Comparison of Old Hit with different replication algorithms.

requested data is not of the new version. Because the up-
dated version of the requested document is delivered to all
copies when a change is made at its origin server in the
Propagation, its Old Hit is zero. However, the network traf-
fic generated by the Propagation is the worst in Fig. 3, where
the traffic caused by sending the new version is shown.

As for the Invalidation [6], when a change is made
at its origin server, this method only sends an invalidation
message instead of the content itself. Then, the client need
to wait for the new version sent from the original server after
the request. As a result, the Old Hit is the worst. Further-
more, sending the invalidation messages to all surrogates
where the copies are stored also causes the additional net-
work traffic. As a result, the total traffic can not be decreased
efficiently.

The Hybrid Policy sets a threshold based on the request
frequency, if the request is beyond the threshold, the Prop-
agation Policy is carried out, otherwise, Invalidation Policy
will be used. In M-TTL Policy, objects are divided into dif-

Fig. 4 Comparison of network traffic with different replication algo-
rithms.

Fig. 5 Old Hit under different simulation times.

ferent groups based on the object change frequency. Differ-
ent groups manage their objects separately according to the
predicted TTL.

From the results in Fig. 3 and Fig. 4, we can obtain
the following conclusions: The two conventional methods
(Propagation Policy and Invalidation Policy) have their own
drawbacks respectively. The Propagation Policy generates
the worst network traffic and the Invalidation Policy causes
the highest Old Hit and more network traffic compared with
the other 3 methods (Hybrid Policy, M-TTL Policy and Pro-
posal). As for the above 3 methods, they can get the balance
of two conventional ones: Compared with the Invalidation,
their traffics are closed to that of Invalidation but their Old
Hits are much better. Compared with the Propagation, al-
though the Old Hits are more than the Propagation, their
traffic can be greatly reduced.

Since these 3 methods (Hybrid Policy, M-TTL Policy
and Proposal)’ performances seem quite close compared
with the other two methods (Propagation Policy and Inval-
idation Policy) in Fig. 3 and Fig. 4, we continue to test the
performances of these 3 algorithms when the related param-
eters are changed.

We firstly test the Old Hit with respect to the simula-
tion times. From Fig. 5, it shows that the proposed algorithm

SU et al.: SELECTIVE UPDATE APPROACH TO MAINTAIN STRONG WEB CONSISTENCY
2735

Fig. 6 Network traffic under different simulation times.

obtains stable performance when the simulation times are
increased. It always outperforms the other two algorithms
(Hybrid Policy and M-TTL Policy). The reason is because
the proposal decides whether an object should be updated
in a surrogate by considering not only contents request fre-
quency, but also the access pattern of surrogates and fresh
distribution.

We then do the simulation about network traffic when
the different simulation times are carried out. Similar result
is shown in Fig. 6, where the proposed one reduced network
traffic most.

Here, the performance of Hybrid Policy doesn’t change
much when simulation times are increased. In Hybrid
Polity, whether Invalidation or Propagation should be car-
ried out is decided by the rate of request times of this content
(Zj) to the total request times for all contents in CDN (

∑
Zj).

For an given contents, with the increase of simulation times,
its request (Zj) will be increased, however the total request
times for all object (

∑
Zj) is also increased. As the simu-

lation is carried out by Zipf distribution, for an given con-
tent, the ratio (Zj/

∑
Zj) of request times of this content to

the total request times for all contents in CDN will not be
changed. Then the decision of Hybrid Policy for the update
of this content j will not be changed either.

Why our proposal is better than Hybrid Policy can be
explained as follows: 1) In Hybrid, it calculates the request
times within a fixed period unrelated to an given replica’s
lifetime (the time of being valid). But our proposal calcu-
lates the access time from the time of last update to the up-
date time this time. It can reflect the latest popularity of con-
tents since being updated. 2) In Hybrid Policy, for the differ-
ent replica of the same content on the surrogate, it is looked
as the same and is assigned to the same rate (Zj/

∑
Zj). But,

in our proposal, we look at the different replica of the same
content j on different surrogate i to be different by different
consistency priority (Ri, j) since different surrogate i has dif-
ferent request pattern and popularity distribution. As a result
our proposal outperforms the Hybrid.

Finally, we change the relative cache size to test the
performance of each algorithm. The relative cache size
means the percentage of all contents that a surrogate can

Fig. 7 Old Hit under different relative cache size.

Fig. 8 Network traffic under different relative cache size.

store in. Figure 7 and Fig. 8 show that the proposal outper-
forms the other two algorithms when the relative cache size
is changed. Note even if the amount of total data changes,
the result will be the same, because we use a relative cache-
size. When the total data size is getting larger, the available
cache space will also be increased as it is the relative size of
total data. Here we just use the relative cache size to show
the performance of every algorithm under the situation of
the limited cache-capacity.

6. Conclusion

This paper discussed how to optimally manage Web consis-
tency among replicas in content distribution networks and
presented an efficient scheme to update them without wast-
ing surrogates’ resources. Based on mathematical analysis,
we proposed a novel algorithm to minimize average user
delay over traversed domains where the scalable content
consistency is obtained. Our proposal dealt with not only
popularities of contents and surrogates but also surrogate
load. We then compared our proposal with other conven-
tional methods using computer simulations.

There are a number of works to be done as further re-
searches. Firstly, theoretical analysis should be expanded to
be applicable to general cases. Secondly, implementation is

2736
IEICE TRANS. COMMUN., VOL.E90–B, NO.10 OCTOBER 2007

to be carried out.

References

[1] J. Kangasharju and K.W. Ross, “Performance evaluation of redi-
rection schemes in content distribution networks,” 5th International
Web Caching and Content Delivery Workshop, May 2000.

[2] A. Beck and M. Hofmann, “Enabling the Internet to delivery
content-oriented services,” Proc. 6th International Web Caching and
Content Distribution, Boston, USA, June 2001.

[3] Adero, 〈URL: http:www.adero.com〉
[4] Akamai, 〈URL: http:www.akamai.com〉
[5] Napster, 〈URL: http://www.napster.com〉
[6] P. Cao and C. Liu, “Maintaining strong cache consistency in the

World-Wide Web,” Proc. 17th Int’l Conf. Distributed Comput-
ingSystems, pp.71–86, May 1997.

[7] H.M. Radha, M.V.D. Schaar, and Y. Chen, “The MPEG-4 fine
grained scalable video coding method for multimedia streaming over
IP,” IEEE Trans. Multimed., vol.3, no.1, pp.53–67, March 2001.

[8] V. Cate, “Alex: A global file system,” Proc. 1992 USENIX FileSys-
tem Workshop, pp.1–12, May 1992.

[9] W. Shi, E. Collins, and V. Karamcheti, “Modeling object charac-
teristics of dynamic Web content,” IEEE Globecom 2002, Taiwan,
Nov. 2002.

[10] M. Chesire, A. Wolman, G.M. Voelker, and H.M. Levy, “Mea-
surement and analysis of a stream media workload,” USITIS’01,
pp.259–309, San Francisco, CA, March 2001.

[11] S. Acharya, B. Smith, and P. Parnes, “Characterizing user access to
videos on the videos on the World Wide Web,” SPIE/ACM MMCN
2000, pp.130–141, San Jose, CA, Jan. 2000.

[12] M. Mikhailov and C.E. Wills, “Evaluating a new approach to strong
Web cache consistency with snapshots of collected content,” Twelfth
International World Wide Web Conference, pp.20–24, May 2003.

[13] I. Cidon, S. Kutten, and R. Soffer, “Optimal allocation of elec-
tronic content,” IEEE INFOCOM, pp.205–218, Anchorage, AK,
April 2001.

[14] B. Li, M.J. Golin, G.F. Italiano, and X. Deng, “On the optimal place-
ment of web proxies in the Internet,” IEEE INFOCOM, pp.21–25,
New York, NY, March 1999.

[15] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the placement of
web server replicas,” IEEE INFOCOM, pp.22–26, Anchorage, AK,
April 2001.

[16] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari,
“Scalable consistency maintenance in content distribution networks
using cooperative leases,” IEEE Trans. Knowl. Data Eng., vol.15,
no.4, pp.813–828, July/Aug. 2003.

[17] S.-J. Lee, W.-Y. Ma, and B. Shen, “An interactive video delivery and
caching system using video summarization,” WCW2001, pp.1859–
1869, Boston, MA, June 2001.

[18] Z. Fei, “A novel approach to managing consistency in content distri-
bution networks,” Proc. 6th International Web Caching and Content
Distribtution Workshop (WCW’01), pp.71–86, Boston, MA, June
2001.

[19] S. Ganguly, A. Saxena, S. Bhatnagar, S. Banerjee, and R. Izmailov,
“Fast replication in content distribution overlays,” IEEE INFOCOM,
pp.2246–2256, Miami, FL, March 2005.

[20] L. Breslao, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zip-like distributions: Evidence and implications,” Proc. IEEE
INFOCOM’99, pp.126–134, New York, April 1999.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “On the im-
plications of zipf’s law for Web caching,” 3rd International WWW
Caching Workshop, pp.2223–2245, June 1998.

[22] Kazaa, 〈URL: http://www.kazaa.com〉
[23] Z. Su, T. Washizawa, J. Katto, and Y. Yasuda, “Integrated pre-

fetching and caching algorithm for graceful image caching,” IEICE
Trans. Commun., vol.E86-B, no.9, pp.2753–2763, Sept. 2003.

[24] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replica-

tion in unstructured peer-to-peer networks,” ICS, pp.84–95, 2002.
[25] G. Antoniol, G. Casazza, G. Di Lucca, M. Di Penta, and E. Merlo,

“Predicting Web site access: An application of time series,” Proc.
IEEE the third International Workshop on Web Site Evolution, Flo-
rence, Nov. 2001.

[26] J.E. Pitkow and M.R. Recker, “A simple yet robust caching
algorithm-based on dynamic access patterns,” Proc. Second World-
Wide Web Conference, Amsterdam, 1994.

[27] Z. Su, J. Katto, T. Nishikawa, M. Murakami, and Y. Yasuda,
“Stream caching using hierarchically distributed proxies with adap-
tive segments assignment,” IEICE Trans. Commun., vol.E86-B,
no.6, pp.1859–1869, June 2003.

[28] L.A. Adamic, B. Humberman, R. Lukose, and A. Puniyani, “Search
in power law networks,” Phys. Rev. E, vol.64, pp.046135-1–046135-
8, 2001.

[29] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, “Proxy
caching mechanisms with video quality adjustment,” SPIE ITCom,
Feb. 2001.

[30] S. Keshav, “A control-theoretic approach to flow control,” Proc. SIG-
COMM’91, pp.3–15, Zurich, Sept. 1991.

[31] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Mea-
surement methodology, dynamics, and relation with TCP through-
put,” Proc. SIGCOMM’02, pp.295–308, Pittsburgh, PA, Aug. 2002.

[32] G. Antoniol, G. Casazza, G. Di Lucca, M. Di Penta, and E. Merlo,
“Predicting Web site access: An application of time series,” Proc.
IEEE the Third International Workshop on Web Site Evolution,
pp.57–61, Florence, Nov. 2001.

[33] V. Jacobson, “Pathchar,” ftp://ftp.ee.lbl.gov/pathchar/, 1997.

Zhou Su received the B.E. and M.E. degrees
from Xi’an Jiaotong University, Xi’an, China, in
1997, 2000, and Ph.D. degree from Waseda Uni-
versity, Tokyo, Japan, in 2003, respectively. He
was an exchange student between Waseda and
Xi’an Jiaotong University from 1999 to 2000.
From 2001 he had been a research associate at
Waseda University and he is currently an assis-
tant professor at the same university. His re-
search interests include multimedia communica-
tion, web performance and network traffic. He

received the SIEMENS Prize in 1998, and ROCKWELL Automation Mas-
ter of Science Award in 1999. He is a member of the IEEE and IEE.

Masato Oguro received the B.S. and
M.E. degrees in Science and Engineering from
Waseda Univesity in 2005 and 2007, respec-
tively. His research interest includes application
layer multicast. He has been working with No-
mura Research Institute, Ltd since 2007.

SU et al.: SELECTIVE UPDATE APPROACH TO MAINTAIN STRONG WEB CONSISTENCY
2737

Jiro Katto born in Tokyo, Japan, in
1964. He received the B.S., M.E. and Ph.D. de-
grees in electrical engineering from University
of Tokyo in 1987, 1989 and 1992, respectively.
He worked for NEC Corporation from 1992 to
1999. He was also a visiting scholar at Prince-
ton University, NJ, USA, from 1996 to 1997. He
then joined Waseda University in 1999, where
he is now a professor at the Department of Com-
puter Science, School of Science and Engineer-
ing. His research interest is in the field of multi-

media signal processing and multimedia communication systems such as
the Internet and mobile networks. He received the Best Student Paper
Award at SPIE’s conference of Visual Communication and Image Process-
ing in 1991, and received the Young Investigator Award of IEICE in 1995.
He is a member of the IEEE and the IPSJ.

Yasuhiko Yasuda born in Tokyo on July
7, 1935. He received B.E. and M.E. degrees in
Electrical Engineering, and D.E. degree in Elec-
tronic Engineering from the University of To-
kyo, respectively in 1958, 1960 and 1963. In
1963 he joined the Institute of Industrial Sci-
ence, the University of Tokyo as associate pro-
fessor and was promoted to full professor in
1977. Since retiring from the University of
Tokyo, Dr. Yasuda had been professor from
September, 1992 at the Department of Electron-

ics, Information and Communication Engineering (now the Department of
Computer Science), School of Science and Engineering, Waseda Univer-
sity. At the end of March, 2006 he retired from Waseda University. He
has been given titles of Professor Emeritus by both the University of Tokyo
and Waseda University. His fields of interest have been digital communica-
tions, image coding and processing, Internet applications, and mobile and
satellite communications. During his long career he has made some signif-
icant contributions including the invention of delta sigma modulation, the
proposal of hierarchical image coding, etc. He is a past president of IEICE
and a past president of IIEEJ. He served Chairman of Radio Regulatory
Council (Soumu-shou), Chief of the IT Research Organization at Waseda
University and so on. Dr. Yasuda has been awarded numerous prizes from
various organizations including IEICE and NHK.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

