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Abstract. In order to achieve highly accurate content-based music information
retrieval (MIR), it is necessary to compensate the various bit rates of encoded
songs which are stored in the music collection, since the bit rate differences are
expected to apply a negative effect to content-based MIR results. In this paper,
we examine how the bit rate differences affect MIR results, propose methods to
normalize MFCC features extracted from encoded files with various bit rates,
and show their effects to stabilize MIR results.

Keywords: Mel-Frequency Cepstral Coefficient (MFCC), Content-based MIR
Normalization.

1 Introduction

The recent development of various audio encoding formats such as MP3 (MPEG-1
Audio Layer-3), WMA (Windows Media Audio), and AAC (Advanced Audio Cod-
ing) have enabled efficient compression of music files with high sound quality. This
technology has made possible the development of large-scaled online music distribu-
tion services. Furthermore, it has also become popular for customers of such services
to share their personal “playlists,” i.e., lists of their favorite songs, on the Web. Such
developments may lead to the realization of the “celestial jukebox,” an application
which accumulates all existing music in the world, and makes them accessible to
application users.

Obviously, content-based music information retrieval (MIR) is an essential tech-
nology to make such an application usable. Therefore, many research efforts have
been presented in this area. However, when considering a music collection accumu-
lated for the celestial jukebox, it is clear that the collection consists of songs (audio
files) encoded in various formats and/or bit rates. Therefore, content-based MIR must
compensate the divergence of the features that are to be extracted from such songs. To
the best of our knowledge, this problem has not been seriously considered in existing
MIR research, since evaluations of such research are mainly conducted on data sets
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individually constructed by the researchers, thus do not contain songs of various
formats.

The objective of this research is two-fold. Mainly focusing on MFCC, a representa-
tive acoustic feature utilized in many existing work in the content-based MIR research
area, we will examine influence of diverse audio file formats to MFCC feature extrac-
tion, and prove that the distortion of audio due to encoding cannot be ignored to de-
velop an effective content-based MIR system. Secondly, we propose and evaluate
MFCC normalization methods to compensate for the differences of MFCC features,
which aim to reduce the effects of diverse bit rates to content-based MIR results.

2 Use of MFCCs in Music Retrieval

Mel-Frequency Cepstral Coefficients (MFCC) are acoustic features which are known
to represent perceptually relevant parts of the auditory spectrum. Therefore, MFCC
has been commonly used for speech recognition systems [7]. Furthermore, MFCCs
have also been increasingly utilized in the field of content-based music analysis, such
as genre classification, and audio similarity measures [8].

Spevak et al. [4] performs pattern matching on the sequences of MFCC to select a
specific passage within an audio file. Deshpande et al. [5] convert MFCC features to a
gray-scale picture, and use image classification methods to categorize audio files.
MARSYAS [6] is a popular software framework for audio analysis, which uses
MEFCC as one of the features extracted from music for genre categorization, etc.

Furthermore, Sigurdsson et al. [1] have analyzed the robustness of MFCCs ex-
tracted from MP3 encoded files, and have concluded that MFCCs are sufficiently
robust features, which can be utilized for content-based MIR. However, they have not
provided any analysis about the effect of extracted MFCCs to content-based MIR
results, which is the focus of this paper.

Generally, as the research efforts of the above conventional works indicate,
MEFCCs have generally been utilized as features, which express the timbral character-
istics of music. While other aspects of music, e.g., rhythm, harmony, and melody, are
also essential to develop effective MIR systems, MFCCs can be assumed as a
representative feature for content-based MIR.

In the following sections, we first investigate the influence of MFCC features ex-
tracted from differently encoded audio files, and show that the influence is not ne-
glectable for content-based MIR. We also propose methods to compensate this
problem, and reduce influence to MIR results that are caused by encoding distortion.

3 Analysis of MFCCs of Variously Encoded Music

3.1 Influence on MFCC Values

First, we examine the variance of MFCCs extracted from MP3 files encoded in differ-
ent bit rates, and compared them with MFCCs extracted from raw audio files. All
MECC values are calculated with window size 25ms, window interval 10 ms and 13-
dimension (12-dimention+power). LAME 3.97 is used for encoding and decoding,
and the Hidden Markov Model toolkit [9] is used for calculating MFCC. For each
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MFCC dimension, we compared the MFCC values extracted from raw audio files
(hereafter referred as Raw_MFCC) with MFCC values extracted from MP3-encoded
files (hereafter referred as MP3_MFCC), with bit rates of 128kbps (44.1kHz) and 64
kbps (24kHz).

MEFCC values of each dimension are extracted from the same portion of the raw
and encoded files. Figure 1 illustrates the MECC values of the 1%, 6™, and 12" dimen-
sions, extracted from two Japanese pop songs (SONG_A: male artist, SONG_B: fe-
male artist). It is clear from this Figure that the values of MFCC extracted from raw
audio and MP3 files are different from each other. For example, let us focus on the
MFCC value differences of the 1% dimension (shown on the first two graphs of
Figure 1). For SONG_A, the MFCC values extracted from the 128kbps MP3 file are
generally higher than that of the raw audio file, while the MFCC values of the 96kbps
MP3 file are lower. However, the general distribution of MFCC values is different for
SONG_B. Namely, the MFCC values of the 96kbps MP3 file are closer to those of
the raw audio file, which is clearly different from the above observations of the
MEFCC values extracted from SONG_A.

MFCC values of the 1-st dimension (SONG_A) MEFCC values of the 1-st dimension (SONG_B)
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Fig. 1. Comparison of MFCC values extracted from MP3 files with various bit rates
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Overall, the results of Figure 1 indicate that, even if the target song is the same, the
MEFCC values extracted from variously encoded files are different. Furthermore, it is
also clear from the results of Figure 1, that the difference of MFCC values is depend-
ent not only to the bit rate of MP3 encoding, but also to the acoustic features of the
target song. These differences are expected to apply a significant impact to content-
based MIR systems which utilize MFCC-based features, especially for music
collections which consist of songs in various formats.

3.2 Influence on MIR

Next, we examine the effects of the difference of MFCC features to content-based
MIR, based on an experimental content-based MIR system, and a music collection
consisting of MP3 files with various bit rates.

For this experiment, we have developed a prototype MIR system, based on the
MIR method proposed by Hoashi et al. [2], which utilizes the tree-based vector quan-
tization (TreeQ) algorithm proposed by Foote [3]. TreeQ constructs the feature space
to vectorize music, based on training data, i.e., music with category labels. The train-
ing audio waveform is processed into MFCCs, and TreeQ recursively divides the
vector space into bins each of which corresponds to a leaf of the tree. Once the quan-
tization tree has been constructed, it can be used to vectorize input music data. We
used the songs and sub-genre information of the RWC Genre Database [10] as the
initial training data. Then, the method of Hoashi et al. is applied to automatically
derive the training data set from the music collection for TreeQ, based on the results
of clustering songs. This method enables the extraction of features that optimally
express the characteristics of songs in any given music collection.

The music collection of our prototype MIR system consists of songs with various
bit rates. Namely, the music collection consists of 2513 MP3 files of Japanese and
Korean pop songs, whose bit rates range from 96kbps to 192kbps. Details of distribu-
tion of bit rate for that dataset are 96kbps (708files), 128kbps (589files), 160kbps
(1195files), and 192kbps (21files).

First, we analyze the distribution of the vectors of songs with various bit rates, by
plotting all song vectors on a two dimensional feature space. Namely, the dimensions
of the song vectors are reduced to two, by selecting the first two elements of principal
component analysis conducted on the vectors of the songs in the music collection.

Figure 2 shows the distribution of all vectors in our music collection on the two-
dimensional feature space. From Figure 2, it is clear that, the vectors of 96 kbps songs
are densely located in a small area of the feature space, whereas the song vectors of
songs with higher bit rates are scattered evenly, regardless of the actual acoustic fea-
tures of the songs.

This result indicates that song vectors used for content-based MIR are severely af-
fected by the bit rates of the songs in the collection. An example of a problem which
may occur as a result of this result, is a situation where a user submits a query song,
which happens to be encoded with low bit rate. While songs which are perceptually
similar to the query song may exist in the music collection, such songs may not be
successfully retrieved by the MIR system, simply because the bit rates of the songs in
the collection differ to that of the query song.
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Fig. 2. Distribution of song vectors in 2D feature space

3.2.1 Experimental Data

Next, we examine how the divergence of song vectors extracted from songs with
various bit rates will affect content-based MIR results. For the following experiment,
we have prepared a music collection which consists of 96 Japanese pop songs. From
this music collection, we generated four sets of music audio files: Raw (wav files with
no compression), and MP3 files encoded in 192kbps (44.1kHz), 128kbps (44.1kHz),
and 64kbps (24kHz).

3.2.2 Experiment Method

From the previous four sets of music audio files, we have constructed content-based
MIR systems, following the method proposed in [2]. Namely, the feature space for
each set (hereafter referred as: Raw_hist, 192_hist, 128_hist, and 64_hist, respective
to the format/bit rate of the music collection) is generated by the method of [2], and
all songs in each data collection are vectorized based on the corresponding feature
space. Furthermore, in order to simulate a music collection composed of songs in
various formats, we have also generated a “mixed” data collection of MP3 files, by
randomly selecting the bit rate of each song evenly in the experimental data set. Vec-
tors of all songs in the mixed collection are also generated in the same way. We will
refer to this feature space as “mix_hist.”

3.2.3 Evaluation Measures

In order to analyze the difference between MIR results for song collections with vari-
ous formats, we select a song as the MIR query, and calculate the similarity between
the selected query and all other songs in each collection. The MIR results of Raw_hist
are utilized as a reference, to which the results of the other MIR systems are
compared. Query-to-song similarity is calculated based on the cosine distance
between the query and song vectors.
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The difference between the MIR results of the raw data set and the encoded data sets
({192, 128, 64, mix}_hist) is measured by calculating the correlation coefficient between
the MIR results, i.e., the list of songs and their similarity to the query. Correlation coeffi-
cient (r) between MIR results of Raw_hist (R) and other feature space (H), which consists
of N (=95) cosine distance scores, are calculated by the following formula.

r= ZZ:I (Rk —EXH,{ _E)
IS (k=R S (-]

where R, denotes cosine distance between the query and the k-th song in Raw_hist,

(D

and R denotes the average cosine distance of all data from the query in Raw_hist.
Similarly, H, denotes the cosine distance between the query and the k-th song,

and H denotes the average cosine distance for each system ({192, 128, 64, mix}_hist).

Moreover, as another criterion, we calculate the ratio of songs which appear in the
top ten songs of the MIR results of both Raw_hist, and {192, 128, 64, mix}_hist. This
ratio is hereafter referred to as Coin (which stands for “coincidence”). In the follow-
ing experiment, we calculate the correlation coefficient and Coin for each of the 96
songs, and use the average values for overall comparison of MIR results.

3.2.4 Result
Table 1 shows the average correlation coefficient, and Coin of the MIR results of
Raw_hist and each MP3-based music collection. Furthermore, Figure 3 illustrates the
differences between the MIR result of Raw_hist and the other MIR results. In
Figure 3, all songs are sorted in descending order, based on their similarity to a spe-
cific query song in Raw_hist, and the query-to-song similarity of the other MIR
systems are plotted according to the order of the sorted songs.

The results of Table 1 indicate that the difference of MIR results to Raw_hist in-
creases along with the decrease of encoding bit rates. Another notable observation is
the severe difference between the MIR results of mix_hist and Raw_hist, which can be
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Fig. 3. Comparison of cosine distance of songs sorted by similarity in Raw_hist
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Table 1. Average of correlation coefficient and Coin of MIR results

Feature space Correlation Coin
192 _hist 0.900 6.28/10
128_hist 0.899 6.25/10
64_hist 0.850 5.25/10
mix_hist 0.219 2.23/10

observed from the low correlation coefficient and Coin of mix_hist in Table 1, and the
scattered cosine distance of mix_hist results in Figure 3.

3.2.5 Discussions

As clear from the results of Table 1 and Figure 3, the difference of MFCC values
extracted from audio files with different bit rates applies a significant impact to con-
tent-based MIR results. This is especially notable for music collections composed of a
mixture of songs encoded with various bit rates, as can be observed from the results
of mix_hist.

If the music database for a “celestial jukebox is to be accumulated by collecting
music data from various record companies and/or Web users, the resulting collection
will consist of songs in various formats. The previous experimental results indicate
that, existing content-based MIR methods, such as the method utilized in our previous
experiments, must be able to handle the diversity of feature values that are expected to
be extracted from songs with different formats.

The results in Table 1 show that, when the bit rate of songs in the music collection
is fixed, the correlation to the original MIR results is high. Therefore, a naive solution
to resolve the difference of features extracted from mixed song collections is to unify
the bit rate of all songs, prior to feature extraction. This bit rate unification can be
conducted by adjusting the bit rate of all songs to the lowest bit rate of all songs in the
music collection. By this method, the feature space is expected to be closer to the
original feature space, than directly utilizing mixed features. However, if the mini-
mum bit rate of songs in the music collection is extremely low, the amount of infor-
mation to be lost in the bit rate adjustment process will be huge, especially for songs
with high bit rates. Moreover, if a music file whose bit rate quality is lower than the
minimum of the music files in the database is added to the collection, the feature
space must be re-constructed.

In order to solve this problem, we propose methods to normalize MFCC values. Such
methods are expected to resolve the variety of MFCCs, while avoiding the risky process
to unify bit rate quality. Details of this method are described in the following chapter.

4 MFCC Normalization

We examine three normalization techniques, Cepstral Mean Normalization, Cepstral
Variance Normalization, and Mean and Variance Normalization, in order to compensate
the difference of MFCC values extracted from mixed song collections. All of the three
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methods aim to make MIR results close to the original feature space, where MFCC
features are extracted from raw audio files. These normalization methods are used to
reduce the influence of different environmental conditions in the field of speech recog-
nition [11]. In the following methods, the mean and variance of MFCC values for each
MEFCC dimension are calculated for each song, based on all MFCCs extracted from the
song in question. Details of the three methods are as follows.

4.1 Normalization Method

CMN: Cepstral Mean Normalization
CMN normalizes Cepstral vector by subtracting the average Cepstral vector from the
original vector. This method can be expressed in the following formula.

C(i)=C(i)- uli) )

where C (i) denotes the i-th dimensional Cepstram after normalization, C(¢) denotes the

i-th dimensional Cepstram before normalization, and u(i) denotes the average of
i-th-dimensional Cepstral vector.

CVN: Cepstral Variance Normalization
CVN normalizes Cepstral vector by dividing the original Cepstral vector by the stan-
dard deviation.

Ay Cli)
Cli)=—= 3)
ofi)
o(i) is the i-th dimensional Cepstral standard deviation .

MVN: Mean and Variance Normalization
MVN normalizes Cepstral vector by Cepstral average and standard deviation.

Ci)= % )

4.2 Result of Normalization

We first compare the MP3_MFCC (128kbps, 64kbps) and Raw_MFCC (Raw) values
after normalization. Figure 4 shows the result of MVN normalization of the MFCC
values of the same songs and MFCC dimensions presented in Figure 1.

From comparison of Figures 1 and 4, it is clear that the normalized MFCC values
extracted from MP3 files (64kbps, 128kbps) have moved closer to the original MFCC
(Raw) value, especially for MFCC values of 128kbps MP3 files are more overlapped
with those of Raw in each graph. Similar results are also observed for other songs and
normalization methods. This analysis proves that MFCC normalization is effective to
reduce the difference of MFCC values extracted from variously encoded music files.
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Fig. 4. Comparison of normalized MFCC values

Next, in order to examine the effects of MFCC normalization to the vectorization
of music, we generated song vectors from MFCC values extracted from music files of
the same database used in Figure 2 by MVN, and plotted all vectors on a two-
dimensional graph generated by principal component analysis. This result is illus-
trated in Figure 5.

As obvious from the comparison of Figures 2 and 5, the biased distribution of vec-
tors extracted from music files with different bit rates has been generally resolved by
MVN normalization. Similar results are also observed for the other MFCC normaliza-
tion methods. These results indicate that MFCC normalization is also effective to
reduce the difference of MFCC-based song vectors extracted from audio files with
variant bit rates.

Finally, in order to analyze how MFCC normalization affects content-based MIR
results, we have conducted the same experiment as in Section 3.2.2, using the vectors
generated from normalized MFCCs extracted from the mixed music collection. The
results are compared with the results with those of mix_hist presented in Table 1 and
Figure 3.
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Fig. 5. Distribution of song vectors after normalization (MVN)

Table 2 shows the average correlation coefficient and Coin for each normalization
method. Figure 6 shows cosine distance between a specific query and other songs, for
Raw_hist and mix_hist, where MFCC values are normalized by MVN.

Table 2. Average correlation coefficient and Coin of MIR results of mix_hist with MFCC
normalization

Normalization method Correlation Coin

CMN 0.714 4.04/10
CVN 0.439 2.77/10
MVN 0.859 4.52/10

It is clear from Table 2 that, all normalization methods have led to higher correla-
tion coefficients and Coin, compared to the results of mix_hist in Table 1. This result
indicates that MFCC normalization is effective to reduce the difference of MIR
results for mixed music collections. Of the three proposed MFCC normalization
methods, MVN has achieved the highest correlation coefficient and Coin. Similar
conclusions can also be derived from Figure 6, where the difference between the raw
and mixed MIR results has been significantly reduced, compared to the results of
mix_hist presented in Figure 3.

Overall, the above experimental results indicate that, MFCC normalization is effec-
tive to resolve MIR result differences caused by MP3 files encoded with various bit
rates, thus should be implemented for content-based MIR systems with music collec-
tions which consist of variously encoded music files.
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5 Conclusion and Future Work

In this paper, we have analyzed the difference of features extracted from music files
with various bit rates, and their effect to content-based MIR results. Results of our
analysis clearly show that, if the music collection consists of songs whose bit rates
are mixed, the MIR results are significantly different from the results of music col-
lections which consist of raw audio files. Furthermore, we confirmed that normaliz-
ing MFCC is effective to reduce the difference between MIR results for mixed
music collections.

For the next step, we are investigating influences on other spectrum features like
Flatness, Centroid, Rolloff and etc by encoding. We would also like to explore more
optimal compensation methods, and conduct user-based evaluations of the MIR
algorithms.
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