
Strategies towards Robust and Stable
Application Layer Multicast

Tetsuya Kusumoto, Su Zhou, Jiro Katto and Sakae Okubo
Dept. of Computer Science, Waseda University, Tokyo, Japan

Abstract— The purpose of this study is to construct a robust
and stable overlay tree of ALM (Application Layer
Multicast) for real-time video transmission. Firstly, we
propose a proactive route maintenance which enables fast
recovery of the overlay tree against node departures and
failures. By forcing free node degrees for route backup,
signaling overheads for route maintenance can be reduced
in a scalable manner. Secondly, we improve performance of
the proposed method by introducing layered video coding.
Smooth layer management instead of coarse degree
management contributes to reduction of the depth of
overlay tree (i.e. delay) as well as to efficient bandwidth
utilization. Thirdly, we introduce session records of each
node into the overlay tree construction. Long-term history
of user access records is expected to bring more robust
overlay trees. Finally, we carried out extensive evaluation
experiments. Simulations and implementations demonstrate
that our methods lead to fast recovery of the overlay tree
against node departures and reduction of the signaling
overheads. Furthermore, introduction of layered video
coding is proved to be efficient to reduce delays, to improve
bandwidth utilization and to avoid severe degradation of
picture quality. Final experiments show that incorporation
of node stability reduces the number of nodes affected by
parent node departures by promoting adequate nodes to
upper layer of the ALM tree.

I. INTRODUCTION
ALM (Application Layer Multicast) implements the

multicast functionally at end-hosts. Different from IP
multicasting [1], which unrealistically needs global
deployment of routers with IP multicasting capability,
ALM needs only installation of application software and
requires no change in the current network infrastructure.
In addition, it provides flexibility in routing such as
multipath packet transfer and load balancing. The most
active research area in ALM is design of routing protocols
[2]-[15]. There are several measures to evaluate the
effectiveness of the routing protocols as the following: (a)
quality of the data delivery path, that is measured by stress,
stretch and node degree parameters of overlay multicast
tree, (b) robustness of the overlay, that is measured by the
recovery time to reconstruct a packet delivery tree after
sudden end host failures, and (c) control overhead, that
represents protocol scalability for a large number of
receivers.

In the ALM session, each end host is a member of the
delivery tree, and it leaves freely and may fail sometimes.
This is not a problem in IP multicast, because the non-leaf
nodes in the delivery tree are routers and do not leave the
multicast tree without notification. We therefore have to
consider selfish node behaviors in ALM delivery tree
management. Our objective of this paper is to numerate
possible node behaviors which affect ALM delivery

performance and to propose mechanisms to construct
robust and stable ALM delivery trees. In this paper, we
consider two properties of ALM participant nodes, (1)
node departures and failures and (2) session access history.
We also consider introduction of layered video coding to
cope with the first issue in a flexible manner.
Node departures and failures:

When a node departure happens, the time of
disconnecting is important for multicast applications such
as live media streaming, because all the child nodes can
not receive packets for the time. Quick reconstruction of
the overlay trees and the tree structure which is less
affected by node departures are therefore quite important
to maintain the media quality, but little attention has been
given to this problem.

One of the proactive route maintenance approaches
against this problem was proposed by Yang et al [13],
which we call Yang’s method in this paper. Yang’s
method enables nodes to recover from node departures by
ensuring backup route nodes. However, the way of
searching backup route nodes is not scalable. As the
number of nodes increases in the session, the search area
becomes large. This generates extra data overheads.
Volume of control traffic can be significant for some
overlay multicast applications.

We therefore propose a new proactive approach in
order to avoid heavy overheads. Our backup route search
is carried out completely locally by forcing free degree to
each node. This approach achieves fast recovery in low
overhead because backup route search does not depend on
the session size. A problem of this approach is clearly
increase of depth of the delivery tree due to vacant degree.
Layer based management:

We then consider introduction of layered video coding
to reduce depth of the delivery tree in our proactive
approach and to increase bandwidth utilization efficiency.
By integrating layered video coding into our proactive
route maintenance, more flexible streaming can be
enabled and better performance is expected. Experiments
will show that our combined approach solves the tree
depth problem as well as avoids quality degradation of
streaming media.
Session access history:

To build more stable ALM delivery trees, long-term
session history of participants should be introduced into
the tree construction procedure. In addition to
performance measures such as delay and bandwidth, we
pay attention to session records about how long they have
stayed in the past sessions. In general, user behavior is
quite different in ALM session; some nodes immediately
leave the session soon after joining the session, but some
nodes stay for a long time. We utilize long-term
characteristics of user behavior to avoid short living nodes
to be inserted into higher layer positions of the ALM tree.

We then propose a tree construction method using node
stability. We define node stability as a function of session
records of the node in which how long the node stays in
the overlay tree was reflected. Experiments will show that
the number of nodes affected by node departures is
reduced against the classical methods which do not
consider about node stability.

In this paper, we propose three methods to construct
robust and stable ALM overlay trees. The rest of the paper
is structured as follows. Section II provides an overview
and problem descriptions. Section III describes our
proposals in detail. Section IV presents experimental
results. Finally, Section V concludes the paper.

II.

A.

B.

C.

ALM OVERVIEW AND PROBLEM DESCRIPTIONS

ALM Overview
Most ALM protocols had focused on how to construct

an efficient multicast tree. ALMI [2] employs a
centralized solution. In this scheme, a central controller
computes and instructs the construction of the delivery
tree based on performance metrics provided by the end
hosts, hence the load of the central controller becomes
heavy. In decentralized solutions, end hosts exchange the
metric information each other and constructs an overlay
network in a distributed manner. They are categorized into
mesh-first protocols and tree-first protocols. Narada [3],
Scattercast [4] and CoolStreaming [5] are examples of
mesh-first protocols. Each host keeps many connections to
keep the session stable, but the overhead to maintain the
mesh topology becomes large. In contrast, Yoid [6],
Overcast [7] and Peercast [8] are tree-first protocols. In
these approaches, the constructed tree is rooted at a single
node, which is generally a data source of the session. The
overhead to maintain the tree topology is less than that of
the mesh-first protocols, but the sessions are less stable
because the connections of each node become fewer.
OMNI [9] defines a periodical local transformation of the
overlay tree to minimize average latency among entire
hosts. ZIGZAG [10] and NICE [11] try to achieve low
control overhead by building an overlay of hierarchical
clusters.

Node departures in overlay network have been
recognized in more recent works. Tree reconstruction
methods are mainly divided into reactive approaches and
proactive approaches. Finding a next parent is done after
node departure in the reactive approach, but it is done
beforehand in the proactive approach. PRM (Probabilistic
Resilient Multicast) [12] uses a proactive approach for the
overlay multicast. It introduces a method called
randomized forwarding, which generates redundant
packets constantly to handle node departures. Another
proactive approach [13] prepares a backup parent, which
is decided beforehand according to the residual degrees of
nodes over the ALM tree. Split Stream [14] utilizes a
Multiple Description Coding (MDC) to split media stream
into multiple stripes and then provides a separate multicast
tree for each stripe. Even if affected nodes cannot receive
one stripe after a node departure happens, they can receive
media stream of other stripes.

Node Departure Problems
Most of existing ALM methods employ a reactive

approach, in which tree recovery is initiated after node
departure. In this reactive approach, a node which leaves

the overlay tree sends a message to inform other nodes to
be affected by its leaving such as its parent and child
nodes. The child nodes cannot receive data temporarily
until they connect to new parent nodes. When a node
suddenly fails, it cannot send a message to affected nodes,
and they will not notice the failure for a while. Heartbeat
mechanism helps the affected node to notice the failure.
However, the child nodes need a timeout period to
recognize the failure.

In proactive approaches, each host has a backup route
to recover quickly from the parent node departure. In
Yang’s method [13], each non-leaf node decides a backup
parent for its child nodes. This backup route is ensured by
using residual degree of nodes in the overlay tree. Each
host uses Eq.(1) to figure out if its all children nodes can
form their backup routes:

∑
−

=

−≥
1

0

1)(
n

j
j nCd (1)

where a node has n child nodes { }, is
the residual degree of the child , and ∑ denotes

sum of the residual degrees of the child nodes. Firstly, a
parent node calculates residual degrees of its child nodes.
If the total residual degree of the child nodes is not less
than n-1, all the child nodes can form their backup routes.
If not, the child nodes cannot and the parent node
calculates the total residual degree including the residual
degree of descendant nodes of the child nodes. Secondly,
the parent node selects the child node that has the smallest
latency from the grandparent node of the child node. The
child node holds the backup route to the grandparent. The
subtree of the child node which holds the backup route
supplies a backup route to the other child nodes. Then, the
child node and its descendant nodes measure the latencies
to the other child nodes, and the smallest edge is selected.
This operation is repeated until all the child nodes hold
their backup routes. A critical problem of this approach is
that, when this operation continues in lower layers, it
tends to generate heavy overhead packets.

110 ,,, −⋅⋅⋅ nCCC)(jCd

jC −

=

1

0
)(

n

j jCd

Node Promotion Problems
Different from stable IP-multicasting, every node in

ALM trees behaves selfishly. Especially, node departures
in upper level of the tree affect the large number of its
descendant nodes. Therefore, to maintain stable overlay
trees, we have to take care of long-term characteristics of
participant nodes to maintain a stable overlay tree. In
classical approaches such as PeerCast, new participant
nodes connect to the overlay tree as leaf nodes in every
join process. This rule is reasonable for newcomers, but
for nodes which already contributed to the session but
failed accidentally, they have to wait for a long time to
climb again to upper level of the tree. In Bandwidth-
Ordered (BO) tree, nodes are placed in order of bandwidth
(i.e. degree). A new participant node having large degree
can achieve higher position in the tree immediately after
joining the session. However, when the node having large
degree leaves the session immediately, the number of
nodes affected by the node’s departure also becomes large.

Bandwidth-Time Product (BTP) tree [15] utilizes more
stable operation to optimize the overlay tree. The metric is
defined as product of node’s outbound bandwidth and its
age, that is elapsed time from the joining time of a node to

1

2 3 4

5 6 7

8

Data flow
Join message
Redirect message

1

2 3 4

5 6 7

8 1

2 3 4

5 6 7

8

Data flow
Join message
Redirect message

1

2 3 4

5 6 7

Data flow
Backup route

8

1

2 3 4

5 6 7

Data flow
Backup route

8

1

2 3 4

8 5 7

Data flow
Query
Hit or Fail
Join message

6

1

2 3 4

8 5 7

Data flow
Query
Hit or Fail
Join message

6

 (a) New node participation (b) Finding a backup route (c) Tree Reconstruction

Fig. 1: Proactive Route Maintenance I

the session. This metric moves nodes with large BTPs to
higher position in the tree so that better service quality
(less stream disruptions and smaller service delay) can be
offered to participant nodes. For every interval of a certain
time, each node compares its own BTP with its parent and
switches their parent-child relationship when the BDP
value exceeds that of the parent. In this method,
introduction of long time characteristics of participant
nodes reduces occurrence of stream disruptions. However,
it is clear that single session history is not sufficient. Short
time staying nodes having large outgoing degree can
achieve higher position in the tree, and nodes other than
always-on nodes would be affected by the node departures.

PROPOSALS III.

A.

1)

2)

Proactive Route Maintenance by Node Degree
Firstly, we propose a proactive route maintenance

method in which nodes can hold their backup route with
low overhead, which is slight extension of our own
approaches [16][17] with analytical support. In our
approach, we construct an overlay tree without each node
exhausting its degree. Each node constantly has residual
degrees not less than 1. The child nodes of each node can
ensure their backup routes between the grandparent node
and themselves by using their residual degree.

 Tree Construction
We show the process of node joining the overlay tree in

Fig. 1(a). It is assumed that maximum degree of each node
is equal to 4. We then limit the active degree of each node
to 3 and reserve 1 degree for backup route maintenance. In
ordinary tree, when new node 8 requests to connect to
node 1, node 1 accepts node 8 to join as its child node,
because its degree is not exhausted. However, in our
proposal, node 1 refuses the request because the residual
degree of node 1 is only 1. Node 8 sends a join request to
node 2 after receiving a redirect message from node 1. As
a result, node 8 becomes a child node of node 2.

 Backup Route Construction
Next, we show how to decide the backup route of each
node in our proposal in Fig. 1(b). Grandparent node 1
measures RTT to child nodes 5, 6 and 8. A node having
the smallest round trip time holds a backup route to the
grandparent. The second node has a backup route to the
smallest RTT node, and the third node has a backup route
to the second node. A node other than the smallest RTT
node has the backup route to the next smaller RTT node
than itself. In Fig. 1(b), if the ascending order of the nodes
in round trip time is node 5, 6, 8, the smallest RTT node 5
has the backup route to node 1. The second node 6 has the

backup route to node 5. The largest RTT node 8 has the
backup route to the second node 6. We show the pseudo
code of backup route calculation of our proposal in Fig. 2.
This backup route calculation is carried out whenever a
node joins, leaves and fails. Note that the backup route
calculation is required only at the child layer of the
departure node. It never goes down to the lower layers
unlike in Yang’s method.

Backup routes created in our proactive approach are
certainly efficient as long as each node does not exhaust
its degree. However it is possible that a node exhausts its
degree by accepting a node rejoining in the backup route
procedure. When this happens, a tree reconstruction
procedure is invoked by the node itself in order to keep
each node not to exhaust its degree. We show the
procedure in Fig. 1(c). Node 2 uses up its degree because
node 8 joined node 2 as its backup route. Node 2 sends a
query to other child nodes, which are nodes 5, 6 and 7,
and they reply hit or fail messages to node 8. The hit
message means it can accept joining of new hosts. The fail
message means it cannot accept. Node 8 moves to the
node which has sent the hit message first. In Fig. 1(c),
node 6 sends a hit message to node 8, and node 8 joins
node 6. If all messages of the child nodes are failed, the
newly connected node joins the node which it has received
a message first from. Then, it receives a redirection
message from the first node. We show the pseudo code of
tree reconstruction of our proposal in Fig. 3.

Tree Reconstruction
1. Connect (BackupRoute)
2. if BackupRoute.Degree ==

BackupRoute.MaximumDegree then
3. Query (SiblingNodes)
4. if Reply == HIT then
5. JoinMessage (FirstHitNode)
6. else
7. JoinMessage(FirstReplyNode)

Fig. 2: Pseudo code of tree reconstruction.

Backup Route Calculation
// S is set of grandparent and the child nodes
1. SortedS ← Sort S in ascending order of RTT from
grandparent node
//{ SortedS[0] = grandparent node }
2. for i ← 1 to N do
3. SortedS[i].BackupRoute ← SortedS[i-1]
4. end for

Fig. 3: Pseudo code of backup route calculation.

B. Proactive Route Maintenance by Layered Coding
Nodes in our proactive approach can hold their backup

route nodes by forcing at least one degree reserved.
However, this approach clearly causes increase of the tree
depth and inefficiency of bandwidth utilization because
the node degree is not always exhausted. To solve the
problem, we adopt layered video coding as integration
work of our own previous approaches [17][18].

In layered video coding, streaming data is divided into a
base layer and enhancement layers. The media can be
played by receiving the base layer only. Receiving the
enhancement layers improves the media quality.
Furthermore, we can design more flexible ALM protocols
than the single rate case.

When using layered video coding, we need to extend
the definition of node degree. We first assume that each
stream is encoded into M layers and the rate of the m’th
layer (m=1,…, M) is rm. Then we can set the rates of
multiple streams to be {r1 , r2,…., rm,…., rM }, where r1 is
the rate of the base layer. Let BBi denote the outbound
bandwidth of node i, the degree of the node i will be

1r
BD i

i = (2)

The ratio of accumulative rates from layer 1 to m can be
obtained by

1

1

r

r

R

m

q
q

m

∑
== (3)

We assume that a node has n child nodes, and the child k
receives layers 1 to m. Then the number of used degree of
node i is

1

1

1

0

r

r
U

m

q
q

n

k
i

∑∑
=

−

== (4)

Nodes can receive the layers which they are willing to by
using layered coding, but in this paper, nodes receive the
full layers ordinarily and the layers are adjusted in tree
reconstruction.

This proactive approach combined with layered video
coding allows nodes to exhaust their degree as shown in
Fig. 4. When a rate which is equivalent to degree 1 of the
single rate case is 300kbps, it is divided into 100 kbps
base layer and two 100 kbps enhancement layers. In Fig. 4
(a), the node has three child nodes and exhausts its degree.
In Fig. 4(b), another node affected by a node departure
tries to connect to the node in Fig. 4(a). In this transient
period, the requested node then drops enhancement layers
temporarily, and the connecting node can receive
streaming data to play the media continuously. Later, the
connecting node finds a new parent node and connects to
it. The way of finding a new parent is the same as the case
of Fig. 1(c). Until the finding process is completed, the
connecting node can continue receiving streaming data.

Such a smooth transition is impossible by our previous
degree-based approach because its decision is carried out
according to whether the node can accept a request or not.
Furthermore, this smooth transition enables to eliminate
the tree depth problem and leads to reducing delivery
delay of the overlay tree. In this way, layered video coding
can indeed improves our proactive approach, in which

nodes can hold backup routes with low overhead and
utilize bandwidth efficiently.

(a) (b)

base layer

enhancement layer 1

enhancement layer 2

Fig. 4: Tree reconstruction using layered video coding.

C.

1)

Tree Construction by Node Stability
Our proactive route maintenance with layered video

coding enables fast recovery of the overlay tree against
node departures but does not contribute to stable overlay
tree construction in which adequate node differentiation
should be carried out. Therefore, in this subsection, we
describe a tree construction method based on node
stability, which brings long term stability to the overlay
tree. Our basic idea is to place the nodes which stay the
session for a long time at the upper layer of the overlay
tree.

Node Stability
We define node stability as how long a node is expected

to stay in an overlay tree in one session. This metric
ranges from 0.00 to 1.00. Let be the node stability of a
specific node managed by the node itself, N be the
number of session access records, T be the k-th staying
time (from login to logout) to the session, W be the pre-
assigned weight of the k-th session access record, and

S

k

k

α be the constant number corresponding to 1.00 of the
node stability. The calculating formula of node stability is

∑
=

=
N

k

kkTWS
1

α
 (5)

where

∑
=

=
N

k
kW

1

1 (6)

is satisfied.
2)

3)

Rank
The node stability is divided into some ranges, and each

range is assigned a rank in order. If we have 4 ranges, the
lowest range of node stability is rank 0, and the highest is
rank 3. A node has its own node stability and
corresponding rank. Then, the overlay tree is composed in
decreasing order of the rank. We can construct a stable
overlay tree by placing higher rank nodes at the upper
layer of the tree and lower rank nodes at the lower layer.

Configuration in Rank
We construct an overlay tree in decreasing order of the

degree like BO tree in case of the same rank nodes. This
approach contributes to decreasing the tree depth. It
decreases the number of nodes affected by node
departures and the delay from a source node to client
nodes. Exceptionally in the area of rank 0, however, we
force nodes of rank 0 to connect to the overlay tree as leaf
nodes when joining the session. These nodes are not

expected to stay much time in the session because some of
them might join the session and leave immediately. On the
contrary, compared with conventional methods, nodes of
rank 0 can stay the session stably by avoiding the
influence of departures of the nodes. We show the tree
constructed by the rank and degree of node in Fig. 5, and
the pseudo code for tree construction in Fig. 6.

IV.

A.
1)

PERFORMANCE EVALUATIONS
We evaluate the performance of our proactive methods

by simulations and software implementations. We also
evaluate performance of the tree construction with node
stability by simulations.

Simulation Results
Proactive Route Maintenance by Node Degree

We firstly carried out simulations of our first proactive
method, the reactive method and Yang’s method by ns-
2.26 [19]. Fig. 7 shows simulation topology, in which
there are 24 routers, of which four routers are domain-to-
domain routers and the others are set up at random
between clients. The delay and bandwidth between the
domain routers are 100ms and 100Mbps. The delay
between the routers in a domain varies from 10 to 50 ms
and the bandwidth is 100Mbps. The delay and bandwidth
between a router and clients are 10ms and 10Mbps. The
clients are randomly connected to one of the 20 routers
except the four inter domain routers. The maximum

degree of each node varies from 1 to 6. For the experiment,
we fixed the degree of each node at a particular value. The
total simulation time is 300 sec. In the beginning, all
nodes join the tree, and after that each node randomly
chooses to stay, leave, fail or re-join per 15 sec intervals.

router

client100Mbps

10-50ms

10Mbps

10ms 100Mbps

100ms

router

client100Mbps

10-50ms

10Mbps

10ms 100Mbps

100ms

(2,1)

(2,2)

(2,1)

(1,2) (2,1)

(0,1) (1,1)(1,1)

(Rank, Degree)

Fig. 5: Tree structure by rank and degree. Fig. 7: Simulation topology.

0

2000

4000

6000

8000

10000

0 50 100 150 200
number of nodes

av
er

ag
e

re
co

ve
ry

 ti
m

e
(m

s)

reactive
Yang's
proposal

Tree Construction with Node Stability
1. If the degree is not exhausted then
2. accept the new node as a child node
3. else if the rank of a new node == 0 then
4. redirect the new node to the child nodes
5. else
6. // compare rank
7. if the rank of the new node > one of those of the

child nodes then
8. switch from the child node of lowest rank to

the new node
9. else if the rank == the rank of new node then
10. // compare degree
11. if the degree of the new node > one of those

of the child nodes then
12. switch from the child node of lowest rank to

the new node
13. else redirect it to the child nodes
14. else
15. redirect it to the child nodes
Fig. 6: Pseudo code of tree construction with node
stability.

Fig. 8: Average recovery time of node leave case.

0

2000

4000

6000

8000

10000

0 50 100 150 200
number of nodes

av
er

ag
e

re
co

ve
ry

 ti
m

e
(m

s)

reactive
Yang's
proposal

Fig. 9: Average recovery time of node failure case.

0
2000
4000
6000
8000

10000
12000
14000

reactive Yang's proposalm
ax

im
um

 re
co

ve
ry

 ti
m

e (
m

s) leave
failure

Fig. 10: Maximum recovery time of 200 node case.

a) Comparison of Recovery Time
Figs.8 and 9 plot the average recovery time of leave and

failure when changing the number of participant nodes
into the ALM tree, and Fig.10 shows the maximum
recovery time of leave and failure cases when the number
of nodes is 200.

In Fig.8, the average recovery time against node leaving
in the reactive method is larger than those in proactive
methods (our proposal and Yang’s method) in each
number of nodes. In Fig.9, as the number of nodes
increases, the average recovery time of the reactive
method becomes larger. The average recovery time of
proactive methods are suppressed despite the failure case.
In Fig.10, we can see the trend notably. The maximum
recovery times of the reactive method are much larger
than those of our proposal and Yang’s method. The time
of leave case of the reactive method is as large as that of
failure case. This is because, when the node close to the
root node leaves the session, many affected nodes are
redirected from the root node to the edge node of the tree.
On the contrary, the maximum recovery times of proactive
methods keep small against those of the reactive method.
This is because proactive methods can connect to the
backup route node immediately both in leave and failure
cases.

These facts can be quantitatively explained as follows.
Assume that tree depth is n, round trip time between two
nodes is RTT and detection time of leaving or failure (by
heartbeat message) is Δt. In case of the reactive method, it
is possible that n time redirections from the root happen.
Therefore, maximum recovery time of the reactive method
is expected to be ms. In contrast, nodes of
the proactive method can connect to the backup route
nodes immediately, and the recovery time is about

 ms. This tendency especially holds for the
maximum recovery time case and is observed in Fig.10,
where n can be estimated by where d is the
degree and N is the number of nodes.

RTTnt ⋅+Δ

RTTt +Δ

Nn dlog=

b) Comparison of Control Overheads
Figs.11 and 12 show comparison of overheads among

three methods, and Fig.13 shows ratio of the control
packets. Overhead is the total amounts of bytes of all
control packets to maintain the overlay tree. Control
packets are composed of Join, Redirect, Leave, and
Backup messages. Join is used for join request, Redirect is
used in redirect procedure, Leave is used in noticing the
node departure, and Backup is used to search backup
routes. We assume the size of each packet is 128 bytes.

For the reactive method, control overheads come from
the control messages exchanged by the affected nodes to
find new parents. For the proactive method, the control
messages consist of two parts. 1) Similar to the reactive
method, control messages are exchanged by the child
nodes of departure nodes to find their new parents, though
the proactive method needs fewer steps. 2) In addition,
every non-leaf node exchanges information for deciding a
backup route.

We experimented with two redirection methods; a
"round robin" method and a "round trip time" method. In
the round robin method, when a node whose degree is
exhausted receives a join message from a newly joining
node, the node redirects the message to each of its child
nodes in pre-determined order. In the round trip time

method, when a node whose degree is exhausted receives
a join message from a newly joining node, the node sends
its children list to the newly joining node. Then the newly
joining node measures the round trip time between each
node on the list and itself, and sends a join message to the
smallest round trip time node. It is expected that the round
trip time method uses more packets than the round robin
method, but the overlay tree is optimized to be low latency.

0
100
200
300
400
500
600
700

0 50 100 150 200
number of nodes

ov
er

he
ad

 (K
B

) reactive
Yang's
proposal

Fig. 11: Control overheads of the round robin method.

0
100
200
300
400
500
600
700

0 100 200
number of nodes

ov
er

he
ad

 (K
B

)
reactive
Yang's
proposal

Fig. 12: Control overheads of the round trip time method.

0
100
200
300
400
500
600
700

reactive Yang's proposal

ov
er

he
ad

 (K
B

)

Backup
Leave
Redirect
Join

Fig. 13: Ratio of the control packets.

Fig.11 compares overheads of the round robin method

for redirection, and Fig.12 compares the overheads of the
round trip time method for redirection. As shown in these
figures, our proactive method does not generate as many
control packets as Yang’s method for holding backup
routes. This is because backup route search of our method
is carried out locally. On the other hand, overheads of
Yang’s method and our proposal are larger than that of the
reactive method in the round robin method, but the
reactive method generates more packets than the proactive

methods in the round trip time method. This is because the
reactive method using round trip time based redirection
needs more overheads and is not scale to the session size.
Fig.13 shows ratios of the control packets of the round trip
time method for redirection of 200 nodes case. We can see
that the reactive method generates many redirection
messages, Yang’s method generates many backup route
messages but our approach can suppresses both of them.

0

200

400

600

800

1000

0 100 2
number of nodes

av
er

ag
e

de
la

y
(m

s)

00

reactive
Yang's
proposal

Fig. 14: Average delivery delay.

0

400

800

1200

1600

2000

0 50 100 150 200
number of nodes

m
ax

im
um

 d
el

ay
 (m

s)

reactive
Yang's
proposal

Fig. 15: Maximum delivery delay.

0

200

400

600

2 4 6 8degree

av
er

ag
e

de
la

y
(m

s)

0

0.5

1

1.5

ra
tio

reactive
Yang's
proposal
ratio

Fig. 16: Average delivery delay according to node degree.

c) Comparison of Delivery Delays

As expected, our proactive method simplifies the
backup route search and successively contributes to
overhead reduction. However, its structure causes depth of
the overlay tree to be larger and possibly leads to overall
delay increase. Accordingly, Fig.14 shows the average
delay when the number of nodes in the tree changes,
Fig.15 shows the maximum delay of the same case, and
Fig.16 shows the average delay per node which have the

same maximum degree in 200 nodes case. We apply the
round trip time method for redirection in this experiment.

In Fig.14, we can see that the average delivery delay of
our proposal is slightly larger than other methods. This is
because our proposal does not exhaust node degree (for
fast recovery against node departure). In Fig.15, we can
see the same tendency for the maximum delay. However,
when the numbers of nodes becomes larger (100 and 200),
the maximum delay of our proposal becomes smaller than
that of the reactive method. This is because the tree is
constructed effectively enough by round trip time metric.
In the reactive method, when node departure happens, the
affected nodes send join messages to their grandparent
nodes and redirection happens. When the redirected nodes
have to connect to the leaf node of the tree due to degree
exhaust, the maximum delay of the redirected node
becomes large.

In Fig.16, we append analytical ratio of the delays
which is derived as follows. Firstly, we assumed all the
peer-to-peer delays are same and the tree is balanced.
Then, analytical sum of the delay of arbitrary overlay tree
is estimated by

iN
M

i
i ×∑

=0

 (7)

where , iN M and represent the number of nodes which
stay at the i-th layer (where the root is 0 layer) of the tree,
the maximum depth of the tree, and the delay of the nodes
of the i-th layer. The ratio is the sum of the delay of our
overlay tree divided by that of the ordinary overlay tree.
Secondly, let k be the degree of each node. It is clear that
the maximum number of nodes of our proactive method in
the i-th layer is

i

()ik 1− , and that of Yang’s method (or
ordinary overlay tree) is . Then, the analytical delay
ratio is given by

ik

() i

i

i

kk
k

⎟
⎠
⎞

⎜
⎝
⎛ −=

− 111 , (8)

which clearly approaches to unity as k (degree of each
node) increases. This means that the difference of average
delays between our proposal and other methods become
small when the degree increases.

2) Proactive Route Maintenance by Layered Coding
We carried out simulations to verify performance

improvement achieved by our second proactive method
which is enhanced by layered video coding. The
simulation topology is the same as in Fig.7. The maximum
degree of each node varies from 1 to 3. In the beginning of
simulation, all nodes join the tree, and after that each node
leaves the tree every 5 sec randomly. Streaming rate is
300kbps total, which is divided into 100 kbps base layer
and 2 enhancement layers of 100 kbps each. Later in this
paper, we call our first approach without layered video
coding by "Method I" (proposal) and the second approach
with layered video coding by "Method II" (improved
proposal). We show the simulation results in Figs.17 and
18.

a) Comparison of Delivery Delays
We show the average delivery delays of our two

proposals in Fig.17. The delay of Method II is smaller
than that of Method I. This is because layered video

coding enables our proposal to exhaust node’s degree and
contributes to reducing the depth of overlay tree. Also, the
difference becomes large as the number of nodes increases.
In ALM, it is probable that a large number of nodes join
sessions to watch a popular content and this result is
preferable especially in large sessions.

b) Comparison of Bandwidth Efficiency
We then show the bandwidth utilizations of our two

proposals in Fig.18. The bandwidth utilizations are
measured at intermediate nodes in the overlay trees.
Layered video coding enables us to use bandwidth more
efficiently than Method I. This is because nodes of
Method II can exhaust their degree and control the rate
efficiently by selecting adequate layers. Note that, in
Method I, the case that nodes exhaust their degree
happens only in tree reconstruction.

0

200

400

600

800

0 100 200 300 400 500
number of nodes

av
er

ag
e

de
la

y
(m

s)

improved proposal
proposal

Fig. 17: Comparison of average delivery delays.

0
20
40
60
80

100

proposal improved proposalba
nd

w
id

th
 u

til
iz

at
io

n
(%

)

Fig. 18: Comparison of bandwidth utilizations.

3) Tree Construction by Node Stability
We carried out final simulations of the tree construction

method using node stability. We also compare
performances of PeerCast, BO tree and BTP tree methods
by using ns-2.28 [19]. We show the simulation result in
Fig.19. We used bounded Pareto distribution to assign
degrees to nodes. The upper bound, the lower bound and a
shape of the distribution are 6, 3 and 1.2, respectively.
Each node is assigned a fixed probability at random as a
rate parameter of session staying time, which is used to
decide whether or not it leaves the overlay tree at the
decision interval. The decision interval is from 400 to 500
sec. Each node joins the session at random before 2000
sec. A node decides whether to leave the session every
decision interval after it joins the session. A node which
left the session joins the session again 1000 sec after. We
divide the node stability to four ranks, 0, 1, 2 and 3, which

correspond to 0.00 to less than 0.33, 0.33 to less than 0.66,
0.66 to less than 0.99 and 1, respectively. We compared
the number of nodes which are affected by node
departures. In this comparison, there are 400 nodes in the
session and, around 10000 sec, new 400 nodes join the
session intensively (i.e. flash crowds). Around 13600 sec,
the nodes stay in the session out of the new 400 nodes
leave the session. They never return to the session after
they leave. In our proposal, we set parameters of
subsection III.C to N=3, 3600=α and according
to auxiliary experiments, and stability update is done per
1200 sec by each node. The reason we set

NWk /1=

α at 3600 sec
(1 hour) is that the nodes which have the rate parameters
in rank 2 range are expected to stay for about 3000 sec in
average in our auxiliary experiments. We also evaluated
the number of nodes affected by node departures when α
is 3600, 7200 and 10800. When α is 3600, the result is
best and the number of rank 2 nodes affected by node
departures is the fewest.

0

1000

2000

3000

4000

5000

6000

elapsed time (sec)

nu
m

be
r o

f a
ff

ec
te

d
no

de
s PeerCast

BO

BTP

Proposal

Rank 3
Rank 2
Rank 1
Rank 0

5000 10000 15000 20000

Fig. 19: Number of affected nodes by node departures.

a) Comparison of Number of Nodes Affected by
Node Departures

We show the number of nodes affected by node
departures in Fig.19. The numbers are total of the affected
nodes every 5000 sec. Affected nodes are nodes in the
subtree of the departure nodes. Nodes are marked with
each rank by their rate of staying assigned at random. We
also show the ratio of affected nodes with each rank in
Fig.19. From 0 to 5000 sec, the number of affected nodes
of each method is similar. This is because all nodes’ rank
are 0 in their first join in our proposal. From 5000 to
10000 sec, the number of affected nodes of our proposal
becomes smaller. From 10000 to 15000 sec, the affected
nodes of the methods other than our proposal increase.
They are affected seriously by the bursty joins of new
participant nodes around 10000 sec. In our proposal,
already connected nodes are not affected severely because
rank of new participant nodes is 0 and they can connect to
the overlay tree as leaf nodes only. Besides, since the high
rank nodes already connect to the nodes at upper layer,
they are not connected to by the new nodes.

In this figure, BTP tree shows the largest affected nodes
in compared methods. This is because nodes of BTP tree
leave the session after going to the upper layer of the
overlay tree according to the BTP switching procedure. In
every entering the session, nodes connect to the tree as
leaf nodes, and long time staying nodes are affected many
times before they climb to the upper layer of the overlay
tree. BO tree also shows larger affected nodes than our

proposal. This is because short time staying nodes which
have large degree connect to the intermediate of the
overlay tree. The influence is so large that we do not see
the contribution of tree depth reduction in the result.
PeerCast also shows larger affected nodes than our
proposal. This is because long time staying nodes are
affected many times before they stay at upper layer of the
overlay tree. By this result, we can confirm that our
proposal constructs the most stable overlay tree which is
furthermore robust against bursty joins.

B.

1)

2)

Implementation Results
In addition to the simulations above, we implemented

software prototypes for proactive route maintenance and
compared three methods; the reactive method and our two
proactive methods (Methods I and II), over actual
networks. All the prototypes are written by C++ and
operated on Windows XP. We use ITU-T H263+ video
codec. We then show several implementation results
below.

Proactive Route Maintenance by Node Degree

We compare the reactive method and Method I.
Maximum degree of each node is fixed at 3. Total 25
nodes are deployed over three different networks and each
network connects to the backbone in Japan. We can
expect the backbone to have high bandwidth. Firstly, all
nodes join the ALM session, and then each node joins or
leaves randomly for 30 minutes.

a) Comparison of Recovery Time
Fig.20 shows average and maximum recovery times of

the case of 25 nodes. Recovery time of our proposal is less
than half of the reactive method value. This point is the
same as in simulations. As compared to the reactive
method, we can also confirm that the media playback
subjective quality of our proposal was much better than
that of the reactive method when node departures happen.
In the reactive method, playback was felt like “freeze
frame” for a moment, but in our proposal, decoded
pictures had continued to be played smoothly.

b) Comparison of Control Overheads
Fig.21 represent the overheads when the number of

nodes is 15 and 25 in the implementations. Control
packets are composed of the same messages of the
simulations and the size of each message is 50 bytes. In
this experiment, we used the round trip time method for
redirection. As the number of nodes increases, overhead
of the reactive method increases. This trend is the same as
the most-left result in Fig.12.

c) Comparison of Delivery Delays
Fig.22 shows the average and maximum delivery delays

when the number of nodes in session is 25. The delay is
more in our proposal than the reactive method. However,
in media playback, we do not feel any difference between
our proposal and the reactive method. We think that
current difference is not so critical and within the human
perception limitation.

Proactive Route Maintenance by Layered Coding

We used JGNⅡof Japan, which is a network backbone
testbed for research and development. In the network,
there are two local networks. The delay is about 30 ms

from one network to the other. We used I pictures as base
layer and P pictures as enhancement layer to design
layered video coding. The number of nodes is 10. There
are 5 nodes in each network. The degree of each node is 3.

a) Comparison of Delivery Delays
Fig.23 shows the delivery delays of our two proposals.

The delay of Method II is smaller than that of Method I as
expected from the simulation results. Furthermore, we
implemented visualization software by Java which
visualizes overlay tree structure. Using this software, we
confirmed that the tree depth of Method II was smaller
than that of Method I.

b) Comparison of Bandwidth Efficiency
Fig.24 shows the bandwidth utilizations of our two

proposals. The bandwidth utilizations are measured at
intermediate nodes in the overlay trees. Method II can use
bandwidth more efficiently than Method I as expected
from the simulation results.

0

200

400

600

800

1000

reactive proposal

re
co

ve
ry

 ti
m

e
(m

s) average
maximum

Fig. 20: Comparison of recovery delays.

0

100

200

300

400

500

10 15 20 25 30
number of nodes

ov
er

he
ad

 (K
B)

reactive
proposal

Fig. 21: Comparison of control overheads.

0

20

40

60

80

100

reactive proposal

de
la

y
(m

s)

average
maximum

Fig. 22: Comparison of delivery delays.

0
10
20
30
40
50

proposal improved proposal

av
er

ag
e

de
la

y
(m

s)

Fig. 23: Comparison of average delivery delays.

0

20

40

60

80

100

proposal improved proposal

ba
nd

w
id

th
 u

til
iz

at
io

n
(%

)

Fig. 24: Comparison of bandwidth utilizations.

CONCLUDING REMARKS V.
In this paper, we proposed three kinds of methods to

improve robustness and stability of the ALM overlay tree.
Firstly, we presented a novel method of proactive route
maintenance exploiting node degrees. It enables fast
recovery from node departures and reduction of control
overheads. In comparison with conventional methods, our
proposal demonstrates much faster recovery than the
reactive method, and almost same as Yang’s proactive
method. Control overhead of our proposal is less than
Yang’s method and, in the specific case, it is less than the
reactive method. In our proposal, backup route
construction is done in the local area, and the control
overhead does not heavily depend on session size. We
also realized that media playback quality of our proposal
was much better than that of the reactive method when
node departures happen. Secondly, we improved our
proactive route maintenance by introducing layered video
coding. Layered video coding enables our proposal to
exhaust node’s degree. This contributes to reducing depth
of the overlay tree or delivery delay, and to efficient
bandwidth utilization. These expectations are confirmed
by experiments. Thirdly, we proposed a tree construction
method using node stability, which is analogous to
incentives [20]. The number of nodes affected by node
departures can be smaller than those of the methods which
do not consider node staying time to sessions. We then
confirm that our approach constructs a stable and robust
overlay tree.

As future work, implementation evaluation of the node
stability should be carried out, and more global
performance evaluations should be conducted over the

world-wide testbed such as PlanetLab or the public
Internet. Furthermore, since there are a lot of proposals to
improve resilience and efficiency of the P2P streaming
such as mesh overlays like swarming, FEC and network
coding as in [21], extensions of our work to cover recent
innovations should be considered.

REFERENCES
[1] S. Deering, “Host Extension for IP Multicasting,” RFC 1112,

August 1989.
[2] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel, “ALMI: An

Application Level Multicast Infrastructure,” Proc. USENIX
USITS 2001, 99.49-60, March 2001.

[3] Y. Chu, S. G. Rao, H. Zhang, “A Case for End System Multicast,”
Proc. ACM SIGMETRICS 2000, pp.1-12, June 2000.

[4] Y. Chawathe, S. McCanne, E. Brewer, “Scattercast: An adaptable
broadcast distribution framework,” ACM Multimedia Systems
Journal, vol.9, no.1, pp.104-118, July 2003.

[5] X.Zhang, J.Liu, B.Li and T.Yum, "DONet/CoolStreaming: A
Data-driven Overlay Network for Peer-to-Peer Live Media
Streaming",. Proc. IEEE INFOCOM vol.3, pp.2102-2111,
Apr.2005.

[6] P. Francis, “Yoid: Extending the Internet Multicast Architectuire,”
http://www.icir.org/yoid/, April 2000.

[7] J. Jannotti, D. Gifford, K. Johonson, M. Kaashoek, J. O’Toole,
“Overcast: Reliable Multicasting with an Overlay Network,” Proc.
4th Symposium on Operating Systems Design & Implementation,
October 2000

[8] H. Deshpande, M. Bawa, H. Garcia-Molina, “Streaming Live
Media over Peers,” Technical Report 2002-21, Stanford
University, March 2002

[9] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, S. Khuller,
“Construction of an Efficient Overlay Multicast Infrastructure for
Real-time Applications,” Proc. IEEE INFOCOM 2003, vol.2,
pp.1521-1531, April 2003.

[10] D. Tran, K. Hua, T. Do, “ZIGZAG: An Efficient Peer-to-Peer
Scheme for Media Streaming,” Proc. IEEE INFOCOM 2003, pp.
1283-1292, April 2003.

[11] S. Banerjee, B. Bhattacharjee, and C kommareddy, “Scalable
application layer multicast,” Proc. ACM SIGCOMM 2002,
pp.205-217, Aug 2002.

[12] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan, “Resilient
multicast using overlays,” Proc. ACM SIGMETRICS 2003, June
2003.

[13] M. Yang, Z. Fei, “A Proactive Approach to Reconstructing
Overlay Multicast Trees,” Proc. IEEE INFOCOM 2004, March
2004.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: high-bandwidth multicast in
cooperative environments” Proc. ACM SOSP 2003, October 2003.

[15] G. Tan, A. Jarvis, P. Spooner, “Improving the Fault Resilience of
Overlay Multicast for Media Streaming,” Proc. DSN 2006, June
2006

[16] Y.Kunichika, T.Kusumoto, J.Katto and S.Okubo, "Application
Layer Multicast with Proactive Route Maintenance over
Redundant Overlay Trees", Proc. Packet Video 2004, Dec.2004.

[17] T.Kusumoto, J.Katto and S.Okubo, "Tree-Based Application
Layer Multicast using Proactive Route Maintenance and Its
Implementation", Proc. ACM P2PMMS 2005, Nov.2005.

[18] Y.Okada, M.Oguro, J.Katto and S.Okubo, "A New Approach for
the Construction of ALM Trees using Layered Video Coding",
Proc. ACM P2PMMS 2005, Nov.2005.

[19] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns
[20] Bram Cohen, “Incentives Build Robustness in BitTorrent” 2003.

http://bittorrent.com/bittorrentecon.pdf.
[21] V.Fodor and G.Dan: “Resilience in Live Peer-to-Peer Streaming”,

IEEE Commun. Mag., Vol.45, No.6, pp.116-123, June 2007.

http://bittorrent.com/bittorrentecon.pdf

	I. Introduction
	Node departures and failures:
	Layer based management:
	Session access history:

	II. ALM Overview and Problem Descriptions
	A. ALM Overview
	B. Node Departure Problems
	C. Node Promotion Problems

	Proposals
	A. Proactive Route Maintenance by Node Degree
	1) Tree Construction
	2) Backup Route Construction

	B. Proactive Route Maintenance by Layered Coding
	C. Tree Construction by Node Stability
	1) Node Stability
	2) Rank
	3) Configuration in Rank

	IV. PERFORMANCE EVALUATIONS
	A. Simulation Results
	1) Proactive Route Maintenance by Node Degree
	a) Comparison of Recovery Time
	b) Comparison of Control Overheads
	c) Comparison of Delivery Delays

	2) Proactive Route Maintenance by Layered Coding
	a) Comparison of Delivery Delays
	b) Comparison of Bandwidth Efficiency

	3) Tree Construction by Node Stability
	a) Comparison of Number of Nodes Affected by Node Departures

	B. Implementation Results
	1) Proactive Route Maintenance by Node Degree
	a) Comparison of Recovery Time
	b) Comparison of Control Overheads
	c) Comparison of Delivery Delays

	2) Proactive Route Maintenance by Layered Coding
	a) Comparison of Delivery Delays
	b) Comparison of Bandwidth Efficiency

	V. Concluding Remarks
	References

