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1. Introduction 
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Self Introduction 
90 95 00 05 

Multimedia Systems 
(MPEG, ITU-T and IETF) 

Networking and Applications 
(Internet, Wireless and Underwater) 

Multimedia Signal Processing 
(Video and Music) 

Waseda Univ. NEC Corp. 
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Video Compression 
(MPEG, H.26X and Wavelet) 
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Networks and Multimedia 
 Cat-and-mouse game 

time 

SDTV(720x480) 

HDTV(1920x1080) 

4Kx2K 

8Kx4K 

Video 

10Mb 

100Mb 

1Gb 

10Gb 

Wired 

100Gb 

Multiview 

Wireless 

～1Gb 

2Mb 

11Mb 

54Mb 

300Mb 

rate 
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Wired Networks 

CDN surrogate 

HTTP (live) streaming 

5 

Broadband & CDN RTP/UDP & RTSP & TFRC  
→ HTTP/TCP streaming 

• Broadband 
• CDN (Akamai, Lime Networks) 
• Firewall (port 80) 
• ... 

One-way (on-demand / live) 
Bi-directional (interactive) 

Viewer / Sender 

VoIP, IPTV, Streaming 
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Wireless Networks 

Access point / Base station 

Wireless streaming 

6 
Smart phone / Mobile PC 

CDN surrogate 

Wireless  Wireless specific problems 

• Wireless LAN 
• (Cellular) 
• (WiMAX) 
• (Home Networks) 
• (Satellite) 
• ... 

• Wireless issues                

random errors, collisions, 

interference, delay increase 

• Multi-hop issues              

severe interference, lower 

throughput and higher delay 
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Underwater Sensor Networks 
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Underwater  Underwater sensor networks 

• Acoustic channels (sound speed, 
narrow band, huge delay) 
• Temperature and depth effect 
• Vertical or tilted (direction) 
• ... 

uw-sensoruw-sink

surface station

http://www.mbari.org/auv/
IAUV.htm 

Oversea experiments 

AUV (Autonomous Underwater Vehicle) 

Remote control & 
browsing 

Home aquarium 

AUV 

Ship or buoy 

(TCP and) MAC extensions 
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Multimedia Transport 

 Protocol Stack 

video audio 
signaling 

adaptation 

transport layer 

network layer 

data link & physical layer 

compression, computer vision, 3D,  
overlay (CDN, P2P), applications, ... 

RTP/RTCP (synchronization, packet 
loss detection, congestion control) 

TCP, UDP, TFRC (end-to-end control) 

IP (routing, multicast, mobility) 

wired (fast and broadband) 
wireless (WiFi, multi-hop, underwater) 

MAC (multiple access, full/half duplex), 
channel coding, modulation, MIMO, ... 
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TCP Variants 
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 有線 無線 衛星 海中 

TCP TCP-Reno/SACK 
High-speed TCP 
Scalable TCP 
CUBIC-TCP 
H-TCP 
TCP-Vegas 
FAST-TCP 
Compound TCP 
Adaptive Reno 
TCP-Illinois 
YeAH-TCP 
TCP-Fusion 

TCP-Westwood 
TCP-J 
LDA 
TCP-FIT 
 
Indirect TCP 
Snoop TCP 
Freeze TCP 
 
Vegas-W 
FeW 
(cross layer) 

TCP-Hybla 
TCP-STAR 

− 

TFRC TFRC/DCCP 
RAP 
TEAR 
MULTFRC 
VTP 
Hybrid-TFRC 

TFRC-Wireless 
 
 
 
→ 

→ 

− − 

 

 Wired Wireless Satellite Underwater 

TCP TCP-Reno/SACK 
High-speed TCP 
Scalable TCP 
CUBIC-TCP 
H-TCP 
TCP-Vegas 
FAST-TCP 
Compound TCP 
Adaptive Reno 
TCP-Illinois 
YeAH-TCP 
TCP-Fusion 

TCP-Westwood 
TCP-J 
LDA 
TCP-FIT 
 
Indirect TCP 
Snoop TCP 
Freeze TCP 
 
Vegas-W 
FeW 
(cross layer) 

TCP-Hybla 
TCP-STAR 

− 

TFRC TFRC/DCCP 
RAP 
TEAR 
MULTFRC 
VTP 
Hybrid-TFRC 

TFRC-Wireless 
 
 
 
→ 

→ 

− − 
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Wired/Wireless Classification 

 MAC, hops and transmission media 
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 Wired Wireless LAN Multihop Underwater 

duplex Full duplex Half duplex Half duplex Half duplex 

multiple access Switch CSMA CSMA CSMA (TDMA) 

# of hops   Multiple  Multiple 

signal    Acoustic 
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Outline 

 Introduction 
 Wired Networks 

 TCP Variants 
 Hybrid TCP 

 Wireless and Underwater Networks 
 Extensions for WiFi, Multihop and 

Underwater Sensor Networks 
 DTN extension 

 Conclusions 

Can we achieve high-throughput 
ans low-delay simultaneously by  
TCP for multimedia streaming ? 
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2. Wired (Fast & Broadband) 

Networks 
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TCP Variants 
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J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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TCP-Reno and Vegas 

cwnd 

n 
0 

 TCP-Reno (loss) 
cwnd 

n 
0 

 TCP-Vegas (delay) 

Cbottleneck 

a=1 

b=0.5 

loss loss loss 

buffer buffer 
∆ 

stored packets 
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for each ACK 

min
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RTT
RTT
cwnd

RTT
cwnd

⋅







−=∆for every RTT 1+= cwndcwnd(                             ) 

for every RTT 

TCP-Vegas is more efficient but is expelled by TCP-Reno. 
These are too slow for fast and broadband networks.  
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TCP Variants 
• loss based (AIMD: additive increase & multiplicative decrease 

upon packet losses) 
– TCP-Reno / NewReno / SACK 
– High-Speed TCP (IETF RFC 3649, Dec 2003) 
– Scalable TCP (PFLDnet 2003) 
– BIC / CUBIC-TCP (IEEE INFOCOM 2004, PFLDnet 2005) ... Linux 
– H-TCP (PFLDnet 2004) 
– TCP-Westwood (ACM MOBICOM 2001) 

 
• delay based (RTT observation) 

– TCP-Vegas (IEEE JSAC, Oct 1995) 
– FAST-TCP (INFOCOM 2004) 

 
• hybrid (adaptive selection of loss and delay modes) 

– Gentle High-Speed TCP (PfHSN 2003) 
– TCP-Africa (IEEE INFOCOM 2005) 
– Compound TCP (PFLDnet 2006) ... Windows 
– Adaptive Reno (PFLDnet 2006) 
– YeAH-TCP (PFLDnet 2007) 
– TCP-Fusion (PFLDnet 2007) ... Our contribution 
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K 

W(t) 

Wmax*(1-β) 

CUBIC-TCP (1) 

 Fast Window Increase 

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008. 

/* cubic function */ 
Winc = W(t+RTT) – cwnd; 
 
cwnd = cwnd + Winc / cwnd; 
 
/* TCP mode */ 
if ( Wtcp > cwnd ) 
    cwnd = Wtcp; 

3 max

max
3)(*)(

C
WK

WKtCtW

β
=

+−=

RTT
tWtWtcp β

ββ
−

+−=
2

3)1()( max

equivalent to Reno 

β: window decrease rate (e.g. 0.2) 

C: constant (e.g. 0.4) 

“cubic” approximation of window 
control of BIC-TCP 

fast increase at first,  
gradual increase around the target 

convergence target obtained  
from the previous round 

16 
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 Small Window Decrease 

CUBIC-TCP (2) 

if (cwnd < Wmax ) 
    Wmax,new = cwnd * (2-β) / 2; 
else  
    Wmax,new = cwnd; 
 
cwnd = cwnd * (1- β); 

L.Xu et al: “Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks,” IEEE INFOCOM 2004. 

loss 2 

Wmax,new=0.9*cwnd 

Wmax,new=cwnd 

β: window decrease rate (e.g. 0.2) 

loss 1 

small decrease upon packet 
losses (less than 1/2) 

17 

update of convergence 
target Wmax and cwnd 

1-β = 0.8 
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CUBIC-TCP (3) 

 CUBIC’s Cyclic Behavior 

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008. 

repetition of convex &  
concave shapes 

18 
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CUBIC-TCP (4) 
 Advantages of CUBIC 

 Stability ... packets are always buffered 
 Efficiency ... fast increase, small decrease 
 Friendliness ... by TCP Reno mode 
 Intra-protocol fairness ...  gives a chance of 

bandwidth sharing to newly incoming flows 
 

 Disadvantages of CUBIC 
 Too stable due to heavy packet buffering           

⇒ Delay increase 
 Inter-protocol unfairness ... expels all the other 

TCP flows, e.g.“Linux beats Windows !”  (vs. 
Compound TCP) 

K.Munir et al: “Linux beats Windows! or the Worrying Evolution of TCP...”, PFLDNet 2007. 

19 
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TCP Westwood (1) 

 Duplicate ACKs 
 
 
 

 Timeout 
 
 
 

 Multiple versions according to FSE estimation 
methods 
 BSE, RE, ABSE, … 

ssthreshcwndssthreshcwndif
RTTFSEssthresh

=>
=

)(
* min

1
* min

=
=

cwnd
RTTFSEssthresh

2/cwndssthresh =
TCP-Reno’s case： 

FSE： Fair Share Estimates 

C.Casetti et al: “TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links”, ACM MOBICOM 2001. 

20 

just clear the bottleneck 
buffer (instead of 1/2) 
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TCP Westwood (2) 

similar to TCP-Vegas:   

min
min

RTT
RTT
cwnd

RTT
cwnd

⋅







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TCPW-RE: 

T

d
RE Ttt

j

k
kj

∑
−>=

cwnd ⇒ byte counts: Σdk 
RTT ⇒ observation time: T= Σ∆tk 

moving average： RTTnT ⋅=

T 

(e.g. n=4) FSEER k →ˆ

∑
∑
∆

≈
k

k
k t

d
ER̂

M.Gerla et al: “TCP westwood with adaptive bandwidth estimation to improve …”, Comp. & Comm., 2004. 

Fair Share Rate Estimation (TCPW-RE) 

≈ link capacity 

21 

≈ buffered  
packets 
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Hybrid TCP (1) 

 Single flow case 

2/lastcwnd

RTT
RTTcwndlast

min

lastcwnd

packet loss 

n 
BDP 

Adaptive mode selection between loss & delay modes: 
① constant rate until RTT increases (delay mode) : efficiency 
② TCP-Reno when RTT increases (loss mode) : friendliness 

clearing buffer 
(TCPW) ① 

② 
Hybrid 

legacy (Reno) 

vacant capacity 

22 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 

Compound-TCP and TCP-Fusion  
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Hybrid TCP (2) 

 Competing case between Reno and 
Hybrid 

2/lastcwnd

RTT
RTTcwndlast

min

lastcwnd

packet loss 

n 
BDP/2 

Adaptive mode selection between loss & delay modes: 
① fast increase of cwnd (delay mode ... efficiency) 
② slow decrease of cwnd (delay mode ... small buffering) 
③ TCP-Reno when RTT increases (loss mode ... friendliness)  

clearing buffer 
(TCPW) ① 

② ③ 
Hybrid ④ 

legacy (Reno) 

vacant capacity 

23 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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 Classification 

 Hybrids   Window increase ①   Window decrease ④ 

 CTCP  0.125*cwnd0.75  1/2 

 ARENO  B/10Mbps  1/2～1 

 YeAH-TCP  STCP(1.01)  1/2, RTTmin/RTT, 7/8 

 TCP-Fusion  B*Dmin/(N*PS)  RTTmin/RTT 

Dmin: timer resolution, N: # of flows 

Hybrid TCP (3) 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Hybrid TCP (4) 
 Advantages of Hybrid TCP 

 Efficiency ... fast increase, small decrease
（not causing vacant capacity） 

 Friendliness ... loss mode 
 Low delay …  thanks to small buffering when 

no loss based flows compete 
 

 Disadvantages of Hybrid TCP 
 CUBIC friendliness (CUBIC mode ?) 
 No transition from loss mode to delay mode 

happens when buffer size > BDP   
25 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Performance analysis of Hybrid TCP 

26 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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TCP Abstraction (1) 

 Definition of abstraction models 
 loss based (TCP-Reno) : 

 cwnd += 1 (per RTT) 
 cwnd *= 1/2  (upon packet losses) 

 
 delay based : 

 just fills a pipe without RTT increase  
(immediately fills the pipe without buffering) 

 
 hybrid : 

 operates in delay mode when RTT doesn’t increase  
 operates in loss mode when RTT increases 
 mode selection: cwnd = max( cwndloss, cwnddelay ) 27 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 

link capacity 

link capacity 

buffered & overflow 
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TCP Abstraction(2) 

 Parameter definition 
 w : cwnd when packet losses happen 
 W : cwnd which just fill a pipe (i.e. 

corresponding to BDP) 
 p : packet loss rate (PLR) 

 
 Assumption 

 Packet losses by buffer overflow is equivalent 
to those by random errors 

23
8
w

p = (in case of TCP-Reno) 

28 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Performance Analysis (1) 

 Single flow case 

bottleneck link sender receiver 

single TCP flow 

29 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Performane Analysis (2) 

 cwnd

n0

W

w

w/2

w/2

BDP

buffer
loss & hybrid

delay

RTT

RTTmin

0 w/2
n

delay

loss & hybrid

cwnd

n0

W

w

w/2

w/2

BDP

buffer
loss & hybrid

delay

RTT

RTTmin

0 w/2
n

delay

loss & hybrid

cwnd

n
w/20

W

w

w/2

W-w/2

loss

BDP

buffer

delay

RTT

RTTmin

w/20 n
W-w/2

delay

loss & hybrid

hybrid

cwnd

n
w/20

W

w

w/2

W-w/2

loss

BDP

buffer

delay

RTT

RTTmin

w/20 n
W-w/2

delay

loss & hybrid

hybrid

RTT

RTTmin

w/20 n

loss, delay & hybrid

cwnd

n
w/20

W

w

w/2

BDPloss

bufferdelay & hybrid

RTT

RTTmin

w/20 n

loss, delay & hybrid

cwnd

n
w/20

W

w

w/2

BDPloss

bufferdelay & hybrid

(i) W < w/2 (ii) w/2<W <w  (iii) w <W  
large buffer, small PLR 

(always loss-mode) 
large PLR, always vacant 

(always delay-mode) 
small buffer, medium PLR 

(delay & loss adaptive) 

vacant capacity 
always vacant 

w ～PLR、W～BDP 

loss-based 

delay-based 
hybrid 

• cwnd & RTT behaviors Behavior classification  
according to PLR 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 

always buffered 
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Performance Analysis (3) 

 Single flow formulation 

TCP CA round (i) W < w/2 (ii) w/2 ≤  W < w  (iii) w ≤  W 

transmitted  

packets 
2

8
3 w  2

8
3 w  2

8
3 w  Loss 

elapsed time 
B

PSwWwRTTw ⋅−+⋅ )43(
8
1

2
1 2

min
 

B
PSWwRTTw ⋅−+⋅ 2

min )(
2
1

2
1  

min2
1 RTTw ⋅  

transmitted  

packets 
Ww ⋅

2
1  Ww ⋅

2
1  Ww ⋅

2
1  Delay 

elapsed time 
min2

1 RTTw ⋅  
min2

1 RTTw ⋅  
min2

1 RTTw ⋅  

transmitted  

packets 
2

8
3 w  2)(

2
1

2
1 WwWw −+⋅  Ww ⋅

2
1  Hybrid 

elapsed time 
B

PSwWwRTTw ⋅−+⋅ )43(
8
1

2
1 2

min
 

B
PSWwRTTw ⋅−+⋅ 2

min )(
2
1

2
1  

min2
1 RTTw ⋅  

 

PS: Packet size, B: Link bandwidth 31 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Performance Analysis (4) 

 Analysis & simulations 
1Gbps 1Gbps 

100Mbps 
RTT=40ms 

For large PLR (w/2<W), 
delay & hybrid flows achieve 
much more throughputs than 
loss-based one (efficiency) 

buffer size = BDP (constant) 
Packet loss rate : variable 

Compound & YeAH TCPs 
degrade due to large window 
decrease rate 

loss-driven 

delay & 
hybrid 

32 

PER ～ Throughput 
(single flow case) 
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Performance Analysis (5) 

 Two competing flows case 

bottleneck link 

senders receivers 

loss-based TCP flow (TCP-Reno) 

loss-based or hybrid TCP flow 

33 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Performance Analysis (6) 

large buffer, small PLR large PLR, always vacant small buffer, medium PLR 

w ～PLR、W～BDP 
  cwnd

n0

W

w/2

BDP

buffer

loss & hybrid

total

w

w/2

cwnd

n0

W

w/2

BDP

buffer

loss & hybrid

total

w

w/2

n0

W
w

w/2

w/2(W-w)/2

BDPW/2

loss

cwnd

buffer

hybrid

total

n0

W
w

w/2

w/2(W-w)/2

BDPW/2

loss

cwnd

buffer

hybrid

total
cwnd

n0

W

w
w/2

w/2

BDP

buffer

W/2

total

loss

hybrid

cwnd

n0

W

w
w/2

w/2

BDP

buffer

W/2

total

loss

hybrid

always buffered 
(loss mode) 

always vacant 
(delay mode) 

vacant → buffered 
(delay → loss) 

(i) W < w (low PLR) (ii) w <W < 2*w (medium PLR) (iii) 2*w <W (high PLR) 

• cwnd behaviors 
loss-driven 

hybrid 

total (loss + hybrid) 

34 

cwnd behavior classification 
according to PLR 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Performance Analysis (7) 

 Two flow formulation 

PS: Packet size, B: Link bandwidth 

TCP CA round (i) W < w (ii) w  ≤  W  < 2w (iii) 2w  ≤  W 

Loss transmitted  

packets 
2

8
3 w  2

8
3 w  2

8
3 w  

Hybrid transmitted  

packets 
2

8
3 w  22 )(

4
1

8
3 wWw −+  2

8
3

2
1 wWw −⋅  

(common) elapsed time 
B

PSWwwRTTw ⋅−+⋅ )23(
4
1

2
1

min
 

B
PSWwRTTw ⋅−+⋅ 2

min )2(
4
1

2
1  

min2
1 RTTw ⋅  

 

35 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 



Katto lab. 

Performance Analysis (8) 

 Analysis & simulations 

For large PLR (w<W), delay & 
hybrid flows achieve more 
throughputs than loss-based 
one (efficiency) 

buffer size = BDP (constant) 
Packet loss rate : variable 

For small PLR (w>W), hybrid 
behaves as loss-based 
(friendliness) 

loss-driven 

delay & 
hybrid 

1Gbps 1Gbps 

100Mbps 
RTT=40ms 

PER ～ Throughput 
(two flow case) 

36 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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Performance Analysis (9) 

 Hybrid TCP can achieve 
 throughput efficiency and low delay as delay-

mode when vacant capacity exists on a link, 
and 

 TCP-Reno friendliness as loss-mode when 
packets are buffered at a router 
 

 For wired networks,  
 models, simulations and implementations 

(though omitted here) perform almost as 
expected 

 37 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 
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URL 

 http://www.katto.comm.waseda.ac.jp/TCP-Fusion 
 

 MATLAB code for performance analysis 
 ns-2 simulation code 
 Linux implementation code 

 
 You can enjoy if you have an interest 
 

38 

J.Katto et al: “Simple model analysis and performance tuning ...”, IEEE Globecom 2008. 

http://www.katto.comm.waseda.ac.jp/TCP-Fusion


Katto lab. 
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3. Wireless Networks 
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Wireless LAN 

40 
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Discussion 

 Wireless LAN 
 CSMA/CA, half-duplex, interferences, 

random errors, ... 
 cannot send packets when the sender wants to 
 packets are continuously stored into a 

transmission buffer of the sender 
 

 NIC buffer size is very large 
 Hybrid TCP always operates in the loss mode 

only 
 

 Unfairness between upload and download 
 D.Leith: WiOpt 2005 

41 
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WiFi Example 

 RTT instability and unfairness between 
upload and download 

42 

upload, wireless to wired download, wired to wireless RTT RTT 

S1 
UDP 

S2 
TCP 

R AP PacketStorm 
10/100ms 

wireless 
wired 

K.Kanai et al: “Performance evaluations of adaptive rate control mechanisms ...”, IEICE Tech. Report, 2011. 
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Wireless LAN (1) 

43 

 TCPs and throughputs 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

NewReno Fusion Vegas Proposal
T
o
ta

l t
h
ro

u
gh

p
u
t(

K
b
p
s)

802.11b

802.11e

upload throughputs 

TCP-Reno: loss based 
TCP-Fusion: hybrid 
TCP-Vegas: delay based 
Proposal: Vegas extension 

Apply IEEE 802.11e to alleviate  
the unfairness problem 

between upload and download 

10 flows 

※ ns-2 simulation 

K.Sonoda et al: “Performance Improvement of TCP-Vegas ...”, IEICE Tech. Report, 2010. 
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Wireless LAN (2) 

44 

 TCPs and delays 

0

100
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0
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1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1

Number of the upstream connection

a
v
g
 R
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(m

s
)

802.11b Vegas
down

802.11b Vegas
up

802.11e Vegas
down

802.11e Vegas
up

802.11e Proposal
down

802.11e Proposal
up

TCP-Reno (loss based) 

TCP-Fusion (hybrid) 

TCP-Vegas & Proposal (delay based) 

11b 11e 

11b 11e 

11b 11e 11e 

Reno, Fusion: though unfairness was 
alleviated, delay increases (esp. upload) 
Vegas & Proposal: unfairness and delay are 
decreased (compare vertical axis) 

→ Hybrid TCP works in loss mode only 

K.Sonoda et al: “Performance Improvement of TCP-Vegas ...”, IEICE Tech. Report, 2010. 
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Wireless LAN (3) 
 Common to wired 

 Delay based TCP design is 
effective if we require low 
delay transmission (but, it 
is expelled by loss based 
flows) 
 

 Differences to wired 
 Hybrid does not operate in 

“hybrid” (delay mode) due 
to huge transmission 
buffer  

 Too many packet insertion 
causes huge delay due to 
multiple access mechanism 
(i.e. CSMA) 
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Critical throughput-delay tradeoff 
due to CSMA/CA 
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TCP Version Differentiation (1) 

TCP version identification and 
differentiation 

 

1．Access points identify TCP 
versions using RTT/cwnd 
estimation 

 
2. Access points separate different 

TCP versions into different 
buffers 

 
3. Prioritize delay based TCP flows 

by tuning CSMA/CA parameters 
of IEEE 802.11e 

CSMA/CA CSMA/CA 

packet transmission 

buffer 
for Reno 

buffer for 
Vegas 

version identification 
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prioritize delay-based TCPs 

K.Sonoda et al: “A Method of TCP Version Identification ...”, IEICE Tech. Report, 2011. 
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TCP Version Differentiation (2) 
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 RTT estimation for 
delay based flow 
 When cwnd increases 

by one, two consecutive 
packets are transmitted 

 When cwnd decreases 
by one, no packets are 
transmitted for the last 
ACK 
 

 cwnd estimation 
 Access points let the 

number of arrived 
packets per RTT be 
“cwnd” 
 

0.83[ms] 

0.747[ms] 0.83[ms] 

1.66[ms] 

0.83[ms] 

when cwnd increases by 1 

when cwnd decreases by 1 

0.83[ms] 

0.83[ms] 

TCP behavior estimation at AP 

K.Sonoda et al: “A Method of TCP Version Identification ...”, IEICE Tech. Report, 2011. 
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TCP Version Differentiation (3) 

48 without differentiation with differentiation 

cwnd & RTT behavior comparison between Reno & Vegas 

throughput comparison 

K.Sonoda et al: “A Method of TCP Version Identification ...”, IEICE Tech. Report, 2011. 

Reno 

Vegas 
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Wireless Multihop Networks 

49 
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Wireless Multihop Networks (1) 

 Single Radio Multi-hop Transmission 
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Sender 

Receiver 

Multihop packet 

0 

nT 

Interferences 

Carrier sense range 

1 
2 

n 

Link utilization ratio can be at most 1/4 (or 
1/n without pipelining, where n = # of hops) 
(J.Li et al.: ACM Mobicom 2001)  
 
Small packet buffering at the intermediate 
nodes (Z.Hu et al: IEEE INFOCOM 2003) 

Decrease of link utilization 
due to radio interferences  0 

1 

2 

3 

3 



Katto lab. L.Ding et al.: “Improve throughput of TCP-Vegas in multihop ad hoc networks”, Computer Communications, Jun.2008. 
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 Vegas-W [Ding, C&C 2008] 
 Slower window increase than TCP-Vegas 

)&or( CACA Nn ≤≤∆≤∆≤ αβα

much slower than TCP-Vegas 

Wireless Multihop Networks (2) 
for wireless multihop 
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nCA: # of consecutive states entering into                       

 

NCA: threshold (e.g. 100) 
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Wireless Multihop Networks (3) 
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 Our proposal [IEICE, 2009] 
 Exponential decrease of window increase 

succ: # of states consecutively 

entering into 

count: suppression parameter to be 

incremented 

N: succ maximum (e.g. 10) 

Nsucc ≤<∆ &&α
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for multihop & USN 

N.Iikubo et al: IEICE Tech. Report, 2009. 
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Wireless Multihop Networks (4) 

two flows four flows 
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N  TCP Flow

200m

effective in slow link capacity,  
but might be heurictic 

802.11, 2Mbps 
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N.Iikubo et al: IEICE Tech. Report, 2009. 
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Wireless Multihop Networks (6) 

 Common to wired & wireless LAN 
 delay-based TCP is effective as long as 

no competing loss-based flows exist 
 

 Gap to the wired case 
 wired case: faster window increase 

“immediately” fills a pipe 
 multi-hop case: slower window increase 

“safely” fills a pipe  
 54 
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Underwater Sensor Network 

55 
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Discussion 

 Uniqueness of underwater sensor 
networks 
 use acoustic signals instead of electric 

wave  
 speed of light： 300 000 000 m/s 
 speed of sound (underwater): 1500m/s 

 link utilization ratio decreases as the 
distance increases 
 due to huge delay  

 interferences and collisions are similar 
56 
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Underwater Sensor Networks (1) 

 Link Utilization (1) 
sender receiver 

RTS 

CTS 

DATA 

ACK 

S [bit] C [bit/s] 

sender receiver 

x [m] 

v = 1500 [m/s] speed of sound 

bitrate 

packet size 

data transmission time 

T = x/v * 2 + S/C + x/v *2 

RTS/CTS DATA/ACK 
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Link utilization decrease 
due to slow sound speed 

vacant 

vacant 
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 Link Utilization (2) 

Underwater Sensor Networks (2) 
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1024byte RTS/CTS on

256byte RTS/CTS off
256byte RTS/CTS on

sender receiver 

RTS 
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DATA 
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S [bit] 

vacant capacity 

effect of propagation delay 
(can be ignored in radio case) 

efficiency： (S/C) / T 
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relationship between distance 
and link utilization 
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MAC for USN (1) 
Selective ARQ 

1
2
3 1
4 2
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4

4

5
6

NACK

ACK

 Delayed NACK & ACK 
 used in Seaweb prototype 

JSW ARQ 

 1 ACK for 1 DATA 
 deliver multiple packets 

before ACK arrival 
 need node synchronization 

DATA

ACK

NACK

1

2

3

4

3

combination 

M.Gao et al., IEEE ICC 2009 J.Rice: ACM WuWNet 2007 

M.Yoshinaga et al: IEICE Tech. Report, 2011. 
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MAC for USN (2) 

 500m case 
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 Stop & wait (1 DATA / 1 ACK) 
doesn’t work well due to slow 
sound speed 

 Proposal (Selective ARQ + 
JSW) works the best 

Tx Rx 500-
1000m 

M.Yoshinaga et al: IEICE Tech. Report, 2011. 
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 TCP Hybla  
 TCP for satellite links having large RTT 

TCP for USN (1) 
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WH: congestion window size 
ρ: RTT/RTT0 

  RTT: round trip time 
  RTT0: reference RTT (0.025[s]) 

SS: slow start 
CA: congestion avoidance 

Reno 

Hybla 

C.Caini et al.: EAS ASMS 2003, Jul.2003. 
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 TCP Hybla usage for USN 

TCP for USN (2) 
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70m

Hybla provides better 
throughput than Reno, but 
its PLR is very high 

Due to sudden RTT increase, 
Hybla’s congestion window 
becomes extremely huge 

N.Iikubo et al: IEICE Tech. Report, 2009. 

This motivate us to consider lower  
window increase for multihop & USN 
(much lower packet loss & low delay) 
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4. Conclusions 
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Conclusions (1) 

 Transport protocol for efficient & 
low-delay multimedia transmission 
 Hybrid TCP (for wired) 

 efficiency, friendliness, low-delay 
 Wireless extensions 

 TCP differentiation (for WiFi) 
 slow window increase (for multihop & USN) 

 Other appoaches 
 Hybrid MAC for USN 
 DTN for Wireless & USN 64 
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Conclusions (2) 

 Transport protocol integration from 
wired to wireless/multihop/USN 
 high-efficiency and low-delay 

 without network assistance 
 how to reach target rate 
 how to estimate target rate 

 with network assistane 
 differentiation 
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