
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 2, MARCH 1999 325

System Architecture for Synthetic/Natural
Hybrid Coding and Some Experiments

Jiro Katto, Member, IEEE, and Mutsumi Ohta

Abstract—This paper presents a system architecture for syn-
thetic/natural hybrid coding toward future visual services. Scene-
description capability, terminal architecture, and network archi-
tecture are discussed by taking account of recent standardization
activities: MPEG, VRML, ITU-T, and IETF. A consistent strat-
egy to integrate scene-description capability and streaming tech-
nologies is demonstrated. Experimental results are also shown, in
which synthetic/natural integration is successfully carried out.

Index Terms— MPEG-4 synthetic/natural hybrid coding
(SNHC), scene description, streaming, system architecture.

I. INTRODUCTION

RECENTLY, both digital video and computer graphics
have evolved rapidly. Interaction capabilities, previously

exploited in computer graphics, are now emphasized in digital
video [1], [2]. Compression and streaming technologies that
were mainly developed in digital video are now focused on
computer graphics [3].

MPEG-4 specifies synthetic/natural hybrid coding (SNHC)
in their compression algorithms (facial animation and mesh
compression) and their binary format for scene (BIFS) de-
scription [1], [2]. They collaborate with virtual reality mod-
eling language (VRML) [3], which specifies a file format
for describing three-dimensional (3-D) interactive worlds and
objects exchanged on the Internet. Streaming technologies
are mainly specified in the ITU-T H series, such as H.323
for packet networks including the Internet [4] and H.324 for
general switched telephone networks and mobile channels [5].
The Internet Engineering Tasking Force (IETF) also specifies
real-time transport protocol (RTP) [6], which is used for
streaming applications on the Internet and composes a part
of the ITU-T H.323 standard.

However, there have been few discussions about system
architecture for the synthetic/natural hybrid coding. MPEG-4
provides a framework but does not specify actual transport
protocols. ITU-T and IETF present various protocols but do
not give specific considerations on the hybrid coding. Such
inconsistency isolates the hybrid coding from many practical
systems and causes ambiguities in its implementation.

Manuscript received October 1, 1997; revised November 1, 1998. This
paper was recommended by Guest Editors H. H. Chen, T. Ebrahimi, G. Rajan,
C. Horne, P. K. Doenges, and L. Chiariglione.

J. Katto was with Department of Electrical Engineering, Princeton Univer-
sity, Princeton, NJ 08544 USA. He is now with C&C Media Laboratories,
NEC Corp., Kawasaki-shi, Kanagawa 216 Japan.

M. Ohta is with C&C Media Laboratories, NEC Corp., Kawasaki-shi,
Kanagawa 216 Japan.

Publisher Item Identifier S 1051-8215(99)02333-2.

This paper, therefore, tries to create consistent system archi-
tecture that handles both the scene-description capability and
the streaming technologies in a unified manner. Transmission
of scene-description formats is investigated to incorporate
synthetic objects (i.e., computer graphics) into the digital
video world and to provide interaction capability. Terminal
architecture with a media synchronization mechanism and
network architecture considering existing transport protocols
are also discussed, followed by considerations on technological
gaps between digital video and computer graphics. Last,
several experimental results are presented.

II. SCENE-DESCRIPTION CAPABILITY

A. Paradigms

Fig. 1(a) and (b) summarizes classical paradigms for digital
video and computer graphics assuming network transmission.
Digital video has evolved with compression and streaming
technologies. Video signals are encoded and multiplexed with
audio at the transmitter side. They are transferred into a
network consecutively, then demultiplexed and decoded at the
receiver side. Streaming mechanisms play an important role to
guarantee synchronized presentation of video and audio [7].

On the other hand, computer graphics has evolved with
technologies for synthetic object modeling and rendering. They
are stored in the form of rendering programs or by a specified
data-base format on a server. They are exchanged through
a network, and a scene is generated incorporating synthetic
objects at the receiver side. In general, animation is supported
by a script or a byte code instead of streaming mechanisms.
Interaction capability, thanks to the scene-description informa-
tion, has been emphasized there [8], [9].

Integration of digital video and computer graphics has been
carried out in several ways. An example is a virtual studio,
in which composition is done at the transmitter side and the
result is encoded as a single video source. An advantage of this
approach is that the current paradigm of digital video does not
have to be changed. A disadvantage, however, is elimination
in the receiver of interaction capability, which is an important
property of computer graphics.

Another example is VRML, in which video sources are
downloaded along with a scene-description format (i.e., a
VRML file) beforehand. An advantage is that interaction
capability is fully supported since the scene information is
transferred to the receiver. Animation is carried out by scripts
embedded in a VRML file. However, the receiver has to wait

1051–8215/99$10.00 1999 IEEE

326 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 2, MARCH 1999

(a)

(b)

(c)

Fig. 1. Paradigms for digital video and computer graphics: (a) digital video, (b) computer graphics, and (c) integration of digital video and computer graphics.

for a long time for huge media sources to be downloaded
completely due to the lack of streaming mechanisms.

Fig. 1(c) provides a new paradigm for this integration
purpose. A scene-description format is attached to video/audio
streams. They are encoded, multiplexed, and transferred to the
receiver, and a scene is generated consecutively. Video and
audio streams are handled similarly to the case of Fig. 1(a).
Interaction capability is preserved since the scene-description
data is transferred, similar to Fig. 1(b). A technical challenge
is that both decoding and rendering have to be carried out
continuously within an expected frame rate.

B. A Scene-Description Format for Streaming Media

Scene-description formats, such as HTML and VRML,
specify spatial/temporal relationships of objects inside a scene.
In the case of HTML, spatial relationship is determined implic-
itly according to appearance order. In the case of VRML, it is
decided explicitly by the specified fields: center, translation,
rotation, and scale. In both cases, temporal relationship is
presented by attached byte codes or scripts, known as Java or
ECMAScript, which contribute to interaction and animation.

Standards for streaming applications, such as MPEG
and ITU-T H series, specify compression algorithms and
related control (system) parameters. The compression results
are called elementary streams. The control parameters are
used to manage elementary streams: multiplexing, buffer
control, synchronization, and so on. They may be signaled
on a different channel (i.e., control channel), compose an
independent elementary stream, be attached to an access unit
that is a piece of an elementary stream (e.g., time stamps for a

video frame), or be transformed to other parameters according
to transport protocols.

Fig. 2(a) demonstrates a general method to incorporate
streaming media into a scene-description format. It consists
of scene description, media stream properties, and elementary
streams. The scene-description part is composed of a scene
graph and an optional program (script or byte code). A
scene is described in a hierarchical manner by cascading
nodes containing VRML-like parameters: center, translation,
rotation, and scale. The node is a minimal unit of the scene
graph, to which a unique identification number is assigned. The
node is typically classified as a group node and a leaf node;
the former has children but the latter does not. The group
node is used to group and reuse children inside a scene. The
leaf node is used to specify detailed properties of synthetic
objects, as well as video textures and audio sources, which
are mapped onto objects. In VRML, the former corresponds
to Transform and Group nodes, and the latter to Sphere, Box,
IndexedFace-Set, MovieTexture, AudioClip, and so on.

The media stream properties are containers of decoder
control parameters. The parameters indicate compression al-
gorithm, bit rates, buffer sizes, random access information,
pointers to the elementary streams (e.g., URL’s), and so on. A
unique identification number is assigned to the container and
is used to associate the media to the scene description.

Fig. 3(a) shows an example of scene-description syntax. The
ID provides a unique identifier to a node in a scene graph,
corresponding to that in the scene description in Fig. 2(a).
The type informs a node type, e.g., Transform or Sphere in
the case of VRML. The node type determines subsequent

KATTO AND OHTA: SYSTEM ARCHITECTURE FOR SNHC 327

(a)

(b)

Fig. 2. Scene description incorporating streaming applications: (a) basic structure and (b) elementary stream of scene description.

data structure according to the node definition. Thecount1
and count2 present the number of fields and the number of
children nodes, respectively. Field values are provided along
with a fieldID, which identifies a field complying with the
node definition. Children nodes are specified by ID values,
which are also defined in their own node descriptions. A
nesting structure like VRML is not assumed here, but it is
straightforwardly done by replacing the ID fields by node
descriptions of children.

C. Scene Update

Scene description itself can be considered as an elementary
stream by defining its update syntax. Fig. 2(b) depicts this

concept, in which an elementary stream of a scene graph and
its control parameters are provided. Based on this mechanism,
another animation mechanism analogous to the digital video
paradigm (I/P-pictures) is provided.

Fig. 3(b) shows the corresponding syntax for scene update,
to which time stamps may be attached when necessary. The
ID indicates a node in a scene graph to be updated. The mode
determines an action taken by the update command to the
indicated node. The count specifies the number of subsequent
components, of which data structure is determined by the mode
field.

Currently, four modes are considered:replace, append,
insert, and remove.The former two are used to change field

328 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 2, MARCH 1999

(a)

(b)

Fig. 3. Syntax for scene description: (a) node description and (b) scene
update.

values in the selected node. Replace sets new values, and
append adds values to previous ones. For each of them, a
fieldID is attached to identify a field in the node to be updated.
Insert and remove are used to manage children nodes. The
former inserts new children nodes. When the inserted child
node has its own children, corresponding insert commands
should be issued afterwards. Remove erases children nodes,
which are identified by their ID values. It is assumed that all
of the children are removed when their parent node is removed.

Special cases have to be taken into account when insert and
remove commands are applied to a node associated with media
streams. In the case of insertion, media stream properties have
to be informed along with the insert command. Insertion is
carried out only after necessary operations (decoder initial-
ization and channel opening) are completed. In the case of
removal, it is applied only after corresponding channels are
closed successfully. These problems are related to the control
protocols with negotiation such as ITU-T H.245 [10].

D. Relationship to Existing Standards

This section utilizes a generalized form to discuss scene-
description formats necessary to incorporate synthetic objects
and to provide interaction capability. It follows a scene-graph
concept adopted by VRML. Therefore, it can be applied to
VRML and can be used as its streaming extension. In this
case, scene description is done in a nesting manner, and node
identification is executed through its naming mechanism.

The MPEG-4 system provides BIFS and object descriptors,
which correspond to the scene-description format and the

scene/media stream properties discussed in this section, re-
spectively. Differences lie in the compactness of the proposed
method. The current MPEG-4 specification provides more
functionalities that have not been considered in this paper. For
example, MPEG-4 provides two update mechanisms: BIFS-
Update, which happens at a given time instant, and BIFS-Anim
for continuous change of node parameters. This separation
contributes to saving bits in addition to their functional ef-
ficiency.

III. T ERMINAL ARCHITECTURE

A. Browser (Decoder) Configuration

A browser receives scene-description data along with
video/audio streams. Control parameters are also attached for
the decoder/compositor control. Note that the term “browser”
is used instead of the classical term, decoder, since the decoder
is a part of the browser, as shown in Fig. 4.

Fig. 4 demonstrates an example of browser configuration.
Streams are separated by a demultiplexer into video, audio,
scene-description, and control data. They are stored in buffers
and decoded. The results are stored in memories, and their
composition begins. A scene with synthetic objects is gen-
erated according to the scene-description format. Video and
audio signals are then composed into a scene, and the result
is presented to a viewer. The viewer may try to interact with
the scene. The interaction, such as viewpoint movement, is re-
flected in subsequent scenes produced by the scene generator.
A controller indicates the start of decoding and composition
to decoders and a compositor according to control parameters,
respectively.

Stream properties of the scene and media have to be
communicated to the browser when starting a session. They
are used to initialize decoders and to open necessary channels.
When a new object to which new media streams are associated
is inserted during a session, a similar procedure is applied.

Buffers store compressed data. Their recommended sizes
should be specified through the media stream properties in
order to avoid buffer overflow and underflow. Memories store
decoding results. Their sizes may be implicitly determined by
picture sizes or audio frame periods that are contained in the
stream properties or elementary streams themselves. However,
when variable delay networks are assumed and a predownload
mechanism of elementary streams is required, both buffer and
memory sizes may be controlled by a server through explicit
indications.

B. Server (Encoder) Configuration

An example of a server (encoder) configuration is presented
in Fig. 5. It takes the style of an authoring tool, in which user
interaction is applied to a scene generator and the change is
transferred to an encoder.

The handling of video and audio streams is carried out in
a similar way to the classical digital video paradigm. The
streams are encoded and put into buffers. They are locally
decoded and stored in memories. The data in the memories
are used for encoding of subsequent access units and for

KATTO AND OHTA: SYSTEM ARCHITECTURE FOR SNHC 329

Fig. 4. Browser configuration.

Fig. 5. Server configuration.

composition by the compositor. Scene-description formats are
also encoded and put into a buffer. They are locally decoded
(when necessary) and stored in a memory. A scene generator
feeds the scene data and produces a new scene graph. This
generator also accepts user interaction (via a keyboard or
a mouse) and transfers the modification to the encoder. A
composer gets the scene graph and video/audio signals and
composes them into a scene. Note that the configuration of

local decoders and a compositor is exactly the same as that
of a browser.

C. Synchronization Mechanism

Fig. 6 depicts a constant delay model, which is obtained
by extending that of the MPEG-2 system [7]. In the case
of the MPEG-2 system, it is assumed that the buffers at

330 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 2, MARCH 1999

Fig. 6. An extended constant delay model for media synchronization: DTS, CTS, and PTS.

both the encoder side and the decoder side cause variable
delays. Then two time stamps, the decoding time stamp (DTS)
and presentation time stamp (PTS), are specified to indicate
synchronization points among different streaming media. They
are attached to access units at the encoder side and retrieved by
the decoder to know adequate decode and presentation timing.
When necessary, time bases furthermore are transferred from
the encoder to the decoder, the so-called clock references.

This framework can be applied to the current case, in which
a compositor is newly introduced. Buffers cause variable
delays. Networks or storage devices cause constant or variable
delays; circuit switching networks and storage devices cause
constant delays, and packet networks such as the Internet
cause variable delays. It is then assumed that, as far as any
operations are carried out on the time line with constant
delays to the synchronization points, media synchronization
is possible. Accordingly, three time stamps are introduced;
DTS, composition time stamp (CTS), and PTS.

The DTS is used to indicate decode timing of each access
unit. In the ideal case, each access unit is extracted from a
buffer, decoded, and put into a memory at DTS. The CTS
is used to specify composition timing that corresponds to the
PTS in the MPEG-2 systems. In the ideal case, each decoded
signal is read from the memory and is composed into a scene
at CTS. Following the MPEG-2 scenario, the DTS may be
omitted when no B-pictures are used in the video compression
algorithm. In that case, the DTS is assumed to be same as
the CTS. The PTS is optionally used to indicate presentation
timing of a composed scene. It also can be utilized to specify
rendering points in time of continuous animation caused by
script or byte code and to specify actual rendering delays
when required.

In practice, the CTS/DTS is used to align any events on the
time line with constant delay. A browser manages its resources
to schedule adequate delays to let the decode/render operations
be done in a constant rate. When excessive operations happen
due to a terminal’s insufficient abilities, there should be escape
mechanisms, e.g., temporarily stopping subsequent rendering

operations. Note that no strict buffer requirements are forced
that are dissimilar to the MPEG-2 case because variable delay
networks require loose synchronization there.

IV. NETWORK ARCHITECTURE

A. Basic Scenario

Fig. 7 shows a mapping scenario of the proposed data
structure to actual transport mechanisms. There are already
many transport protocols: for example, MPEG-2 transport
stream [7], H.223 [11], H.225 [12], and RTP [6]. They
introduce their own terms to classify data streams according to
functionality and different quality-of-service requirements. In
Fig. 7, they are classified into either system layer and media
layer or control channel, media channel, and data channel. The
system layer handles the control aspects and is equivalent to
the control channel. The media layer conveys actual streaming
data and corresponds to the media channel. The data channel
is optionally used to transfer private data that may be inserted
into the system layer. It is generally assumed that both the
system layer and the control channel are protected by some
error-handling strategies: retransmission or error-correction
codes. This is because they convey important parameters that
should not be lost.

Scene and media stream properties are necessary to initialize
decoders and a compositor. Therefore, they are assumed
to be transmitted by the system layer or by the control
channel. Scene elementary streams convey scene-description
data, which also need reliable transmission. Therefore, they are
assumed to be transferred by the system layer as private data or
by the data channel with some error protection. Media channels
may be also utilized when adequate error protection is applied.
Media elementary streams convey compression streams for
audio, video, or geometry animation such as facial animation
or object transformation dynamics. Their quantity is sometimes
quite large, and they should be conveyed by the media layer
or by the media channel without heavy error protection.

KATTO AND OHTA: SYSTEM ARCHITECTURE FOR SNHC 331

Fig. 7. Mapping to transport mechanisms.

The detailed relationship to the typical existing standards is
presented as follows.

1) MPEG-2 Transport Stream/H.222:A system layer and
media layers are provided. A system layer also provides a
mechanism to transport private data. Media layers are used
for transmission of video/audio compression streams. They
are split into 188-byte fixed-length packets, called transport
packets, and then multiplexed and transmitted.

2) H.223: A control channel, media channels, and data
channels are provided. There are three layers known as AL1,
AL2, and AL3 (adaptation layers). Generally speaking, AL1
is used for control/data channels, AL2 is used for audio
transmission, and AL3 is prepared for video transmission.
Annexes specify various error-protection strategies differently
applied to these adaptation layers. They are multiplexed and
transmitted with small overheads, which indicate multiplex
patterns specified through a control channel.

3) H.225: Control channels, media channels, and data
channels are provided. There are two types of control channels,
assuming reliable transmission control protocol/Internet
protocol (TCP/IP) transmission (H.245) and unreliable
user datagram protocol (UDP)/IP transmission (registration,
admission, and status). Data channels use TCP/IP transmission.
Media channels utilize UDP/IP transmission with RTP headers
attached. Multiplexing of each stream is done at the IP
transmission level.

4) RTP: Media channels are assumed. This is a transport
protocol for streaming applications on the Internet, and it
constructs a part of ITU-T H.225, described above. RTP
headers are attached to each packet transported on the media
channel. Real-time transport control protocol (RTCP) pack-
ets are returned to report network status and other useful

information. They are assumed to be transported on UDP/IP
channels.

5) MPEG-4: No actual transport mechanisms are specified.
They are called TransMux and should be determined in a flex-
ible manner according to applications. Officially, when usage
of the ITU-T framework is assumed, additional H.245 entries
[10] are required. Otherwise, mapping of the scene/media
properties to the H.245 control messages will be a promising
choice.

B. Broadcasting/Multipoint Scenarios

Fig. 8(a) presents an extended data structure to support
broadcasting applications. A session description table is at-
tached, specifying that multiple sessions (programs) are trans-
ferred simultaneously. This mechanism is exactly similar to
the program map table used in the MPEG-2 transport stream
[7]. A receiver chooses a program, initiates necessary decoders
and a compositor, and only decodes elementary streams corre-
sponding to the chosen program. In this broadcasting scenario,
it is noted that interaction should be limited inside a receiver,
i.e., it should not be returned to a server. Otherwise, a server
suffers from overly heavy interaction requests.

Fig. 8(b) shows another extension mechanism, which sup-
ports multipoint communications. The scene-description for-
mat includes pointers to the media stream properties located
at remote servers in addition to local ones. This mechanism
is already supported by VRML through its utilization of a
URL field. Therefore, this is a small extension to incorporate
streaming applications. Remote entries in the scene description
are provided by the server itself or may be appended by a
new attendant.

332 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 2, MARCH 1999

(a) (b)

(c)

Fig. 8. Applications of scene description: (a) a broadcasting scenario, (b) a multipoint scenario, and (c) usage of a multipoint control unit.

Fig. 8(c) supports this scenario from the viewpoint of the
ITU-T framework. The multipoint control unit (MCU) man-
ages any streams emitted from attendant terminals. It also
handles a scene-description format and works as a scene
server. When a new terminal wants to join a session, it tries to
talk to the MCU, opens necessary channels, and obtains scene
data and media streams. This centralization mechanism unifies
scene description and stream management in a consistent
manner.

V. DISCUSSIONS

There are several new problems raised by the different
cultures surrounding digital video and computer graphics. This
section tries to summarize some of them and to provide
possible solutions (compromises).

A. Coordinate System

Computer graphics introduces a world coordinate system,
which is independent of display devices (device coordinate
systems), when describing a scene [8], [9]. Rendering means

a mapping operation from the world coordinate system to the
device coordinate system. On the contrary, a pixel coordinate
system used in digital video generally coincides with the
display devices, and subsequent aspect-ratio transformation
is implied. When synthetic objects are defined in this pixel
coordinate system, distortions may happen due to the aspect
ratio transformation (i.e., a circle will be an ellipse).

This paper assumes usage of a world coordinate system for
scene description similar to the conventional computer graph-
ics approach. The aspect-ratio transformation is assumed to be
managed in the scene description by adequately specifying the
size of a rectangle onto which video textures are mapped.

B. Conformance

Computer graphics has been evaluated only by subjective
impression. Furthermore, there are a lot of evaluation criteria.
One is rendering speed, which is accomplished by simpli-
fication of rendering algorithms. Another is picture quality,
which is achieved by complicated algorithms with special
techniques (ray tracing, radiosity, etc.) and little simplification.

KATTO AND OHTA: SYSTEM ARCHITECTURE FOR SNHC 333

Accordingly, it is very difficult to set conformance points to
the computer graphics. Pixel-by-pixel conformance of resultant
pictures, which has been forced on the digital video cases, will
not be applied because there are no reference pictures.

A compromise is alleviation of conformance requirements
according to complexity of rendering algorithms. When two
dimensional, it is required that each object is presented at a
correct place with specified colors. When three dimensional,
it is required that each object is presented by a correct depth
order with specified colors. When fast rendering algorithms
are applied, some distortion may be permitted.

C. Complexity

Rendering time greatly changes depending on the complex-
ity of scenes. It also changes according to time events and user
interaction that may suddenly happen. In the case of video
compression, picture sizes and compression functionalities
determine the decoder’s complexity and lead to the concept
of profiles and levels introduced in MPEG-2. Decoding time
is almost stable as long as the decoder conforms to the profile
and level. Therefore, there should be a similar measure that
dominates the rendering time.

A possible solution is to limit the number of nodes as
discussed in the VRML specification [3]. A more predictable
solution to constraining the complexity of rendering, achieved
by progressive mesh or MIP mapping, for example, could also
limit the coverage factor of rendering images. These limita-
tions enable the browser to predict the worst case rendering
time. This enables the browser to allocate constant delays
for possible rendering operations to keep the synchronization
mechanism discussed in Section III-C.

VI. EXPERIMENTS

A. Overview

Fig. 9(a) shows software architecture commonly used in the
following experiments. It consists of stream interfaces, de-
coders, a compositor, and a controller corresponding to Fig. 4.
The stream interfaces receive bitstreams that are transferred via
networks or stored in local library files. The decoders accept
bitstreams compressed by MPEG and the ITU-T H.26x series.
The compositor produces a scene through application program-
ming interface (API) functions provided by typical graphic
libraries such as OpenGL, DirectX, and RenderWare. This part
may be substituted by VRML/HTML browsers or other anima-
tion systems according to applied scene-description methods.
The controller manages these resources through designated
API’s, including protocol handling, buffer size management,
and media synchronization.

A number of primitive experiments are carried out: a)
object extraction for scene composition, b) layered approach
for scene composition, c) Java implementation of a two-
dimensional (2-D) browser, and d) C implementation of
a three-dimensional (3-D) browser. Experiments a) and b)
demonstrate new concepts of communication with the help
of innovative image-processing techniques and real-time ren-
dering engines. The first one exploits multiple cameras and
the other one uses motion information in order to extract

object shapes from natural image sequences, which are put into
synthetic scenes. Their practicality is proved by their real-time
performance on inexpensive PC’s. Experiments c) and d) focus
on new kinds of content creationaimed at Internet applications
especially.The first one composes a two-dimensional scene,
and the second one a three-dimensional scene. Contents are
transferred on the Internet in a streaming manner and are
composed at the receiver side without waiting. These results
prove the effectiveness of the proposed framework, which
enables media integration of text and graphics onto streaming
media. The details are as follows.

B. Object Extraction for Scene Composition

We had developed an object-extraction algorithm using mul-
tiple camera inputs (typically four) [13]. This method utilizes
focusing information and disparity information simultaneously
and extracts stable shapes of target objects. This method,
followed by scene composition, provides a result as shown
in Fig. 9(b).

A bear is extracted from the four camera inputs. It is then put
into a scene that is described by VRML. A viewer can move
around inside the scene. The program is written in C, and
the RenderWare graphics library [14] is utilized to implement
a VRML browser.

C. Layered Approach for Scene Composition

The layered approach [15] produces multiple objects with
shapes, which are extracted from the original video sequences.
This method utilizes motion information in an efficient man-
ner, and its successful tracking results in very impressive
object extraction with motion. We followed this approach with
modification by incorporating region information, and we put
the results into a 3-D scene as demonstrated in Fig. 9(c).

A man and an array of monitors are extracted by the layered
approach applied to our original video sequences. They are put
into a scene that is also described by VRML. They move inside
the scene as they do in the original sequences. A viewer can
pick an object inside the scene. The program is also written
in C with the support of the RenderWare graphics library.

D. Java Implementation of a 2-D Browser

Fig. 9(d) shows a result of a 2-D browser, which feeds
MPEG-1 video sources and a scene-description source that
was originally defined. The syntax of the scene source enables
text overlay and its animation on the decoded movies.

Since a program is fully written in Java, byte codes are
downloaded beforehand and the compositor works on any
platforms. The browser continuously requests and decodes
access units through the HTTP connection. Streaming is
successfully carried out as long as heavy network congestion
does not occur.

E. C Implementation of a 3-D Browser

Fig. 9(e) demonstrates the result in a 3-D browser, which
feeds MPEG-1 video sources and a scene-description source,
BIFS, specified by current MPEG-4 activity. The BIFS stream

334 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 2, MARCH 1999

(a)

(b) (c)

(d) (e)

Fig. 9. Experimental results: (a) software architecture, (b) object extraction for scene composition, (c) layered approach for scene composition,(d) Java
implementation of a 2-D browser, and (e) C++ implementation of a 3-D browser.

is created by an encoder that transforms a VRML file into a
binary format, and the specified animation data are appended.
The browser continuously feeds the streams and updates a
scene at a specified rate.

MPEG-1 movies are texture mapped onto a square and a
cube. Synthetic objects are also inserted into a scene through
the VRML description. They are animated by the specified
update mechanism. A viewer can change his viewpoint within

KATTO AND OHTA: SYSTEM ARCHITECTURE FOR SNHC 335

the terminal session using a pointing device. A program is
written in C with the support of the OpenGL graphics
library [16].

VII. CONCLUSIONS

This paper describes system architecture for
synthetic/natural hybrid coding toward future visual services.
Scene-description capability, terminal architecture, and
network architecture are discussed by taking account of recent
standardization activities. Possible solutions to technological
gaps between digital video and computer graphics are
also mentioned. Some primitive but promising experiments
are carried out by incorporating image-processing, video-
compression, and computer graphics techniques into a single
framework.

The synthetic/natural hybrid environment seems to be quite
a natural direction for the very near future. There are already
a closed-caption and a virtual studio, which are very simple
examples. The Internet is another example, in which texts,
graphics, audio, speech, and videos are integrated through the
HTML/VRML descriptions. Practical problems arise owing to
the limitations of computational power, which has to man-
age complicated compression algorithms and heavy rendering
operations simultaneously. A breakthrough brought by the
evolution of hardware and development of fast algorithms is
expected and is regarded as future work.

ACKNOWLEDGMENT

The authors would like to acknowledge that discussion with
Prof. B. Liu and Prof. M. Orchard was most helpful. They
also would like to thank members in the MPEG-4 SNHC and
Systems subgroups for their fruitful discussion.

REFERENCES

[1] ISO/IEC JTC1/SC29/WG11, “Information technology—Very-low bi-
trate audio-visual coding—Part 1: Systems,” ISO/IEC CD 14496-1,
1997.

[2] , “Information technology—Very-low bitrate audio-visual cod-
ing—Part 2: Visual,” ISO/IEC CD 14496-2, 1997.

[3] ISO/IEC JTC1/SC24, “The virtual reality modeling language specifica-
tion,” ISO/IEC IS 14772-1, 1997.

[4] ITU-T, “Packet based multimedia communication systems,” ITU-T Rec.
H.323, 1998.

[5] , “Line transmission of nontelephone signals: Terminal for low
bitrate multimedia communication,” ITU-T Rec. H.324, 1995.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A transport protocol for real-time applications,” RFC 1889, Internet
Engineering Task Force, 1996.

[7] ISO/IEC JTC1/SC29/WG11, “Information technology—Generic coding
of moving pictures and associated audio: Systems,” ISO/IEC 13818-
1/ITU-T Rec. H.222.0, 1995.

[8] F. James, A. V. Dam, S. Feiner, and J. Hughes,Computer Graphics:
Principles and Practice,2nd ed. Reading, MA: Addison-Wesley, 1990.

[9] D. Hearn and M. Pauline Baker,Computer Graphics,2nd ed. Engle-
wood Cliffs, NJ: Prentice-Hall, 1997.

[10] ITU-T, “Line transmission of nontelephone signals: Control protocol for
multimedia communication,” ITU-T Rec. H.245, v. 2, 1996.

[11] , “Line transmission of nontelephone signals: Multiplexing pro-
tocol for low bitrate multimedia communication,” ITU-T Rec. H.223,
1996.

[12] , “Line transmission of nontelephone signals: Call signaling
protocols and media stream packetization for packet based multimedia
communication systems,” ITU-T Rec. H.225.0, v. 2, 1997.

[13] J. Katto and M. Ohta, “Novel algorithms for object extraction us-
ing multiple camera inputs,” inProc. IEEE ICIP’96, Sept. 1996, pp.
863–866.

[14] R. F. Ferraro,Learn 3D Graphics Programming on the PC.Reading,
MA: Addison-Wesley, 1996.

[15] J. Y. A. Wang and E. H. Adelson, “Representing moving images with
layers,” IEEE Trans. Image Processing,pp. 625–638, Sept. 1996.

[16] J. Neider, T. Davis, and M. Woo,OpenGL Programming Guide.Read-
ing, MA: Addison-Wesley, 1993.

Jiro Katto (S’89–M’92) was born in Tokyo, Japan, in 1964. He received the
B.E., M.E., and Ph.D degrees in electrical engineering from the University of
Tokyo in 1987, 1989, and 1992, respectively.

Since joining C&C Research Laboratories, NEC Corp., in 1992, he has
been engaged in research on digital video compression, image processing,
and multimedia communication systems.

Dr. Katto is a member of the IEICE of Japan.

Mutsumi Ohta was born in Osaka, Japan, in 1958. He received the B.S.
and M.S. degrees in applied mathematics and physics from Kyoto University,
Kyoto, Japan, in 1981 and 1983, respectively.

Since joining C&C Research Laboratories, NEC Corp., in 1983, he has
been engaged in research on digital compression of television signals. He is
now with the C&C Media Research Laboratories of NEC.

Mr. Ohta is a member of the IEICE of Japan and the Institute of Image
Information and Television Engineers.

