
Replication Algorithms to Retrieve Scalable Streaming Media
over Content Delivery Networks

Zhou Su, Jiro Katto and Yasuhiko Yasuda

School of Science and Engineering, Waseda University
3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-0072, Japan

Contact Email: suzhou@aoni.waseda.jp

ABSTRACT
CDN (Content Delivery Networks) improves end-user
performance by replicating web contents on a group of
geographically distributed content servers. Replication Algorithm
plays an important role in helping users to retrieve Web objects
from the content servers. If a user can directly get the requested
objects from the content server, he need not to contact the remote
origin server and the user delay can be reduced. However, current
replica strategies in CDN are to simply and repeatedly keep the
complete replica of the original object on many content servers.
This method has some disadvantages, including too much
consumed server space and a waste of the storage cost. It is more
serious for replicating some large-sized objects such as streaming
media, which are being distributed over the Internet more and
more.

In this paper, we discuss a replication strategy for scalable video
streaming in CDN to reduce user response and storage cost. Based
on theoretical analysis, assuming layered video coding, we
propose a novel replication algorithm which deals with following
three problems. (1) How many content servers should be selected
to replicate a given video content? (2) For a single video content,
how many layers should be kept in a given content server? (3)
After selecting a group of content servers for each video content,
how do we decide the replication priority for each content server?
Simulation results show that the proposed algorithm can
efficiently resolve the above problems, and provide much better
performance than the conventional methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models.

General Terms
Algorithms.

Keywords
Content Distribution Networks, Replication Algorithm, Scalable.
Streaming, Web Performance, Network Traffic

1. INTRODUCTION

Replication strategies are about how to efficiently store the replica
of Web objects in some content servers which have limited
capacity. When a user ‘s requested object can be retrieved and
provided by keeping its replica in a nearby content server, the user
need not to contact the remote origin server. Then, the user delay
can be reduced. Therefore, the appropriate placement of server
replicas benefits content providers by reducing latency for their
clients, and benefits ISPs by reducing bandwidth consumption and
transmission cost.
The current content replication is to simply replicate the whole
original data into several content servers. Disadvantages of this
method are as follows: to repeatedly store the same large-sized
object into different content servers consumes too much server
space. Also, because some of content servers are not always
requested by the clients, to keep replicas on these servers causes a
waste of storage cost.
These problems become more serious for streaming media, which
has several inherent properties. (1) The size of streaming media is
usually larger than non-streaming files by orders of magnitude
[10]. (2) User access behavior shows quite different characteristics.
For example, clients often stop watching a stream without
watching all of the parts [11]. (3) Different from conventional web
objects, streaming media do not require to be delivered at once.
Instead, streaming servers continuously send data packets to
clients in a (quasi) synchronized manner on the Internet. For these
reasons, the replication mechanisms developed for conventional
web objects such as HTML files or images can’t be efficiently
applied to streaming media such as video and audio.
Recently, researchers found that scalable (layered) video
streaming is appropriate for the Internet because of its better
flexibility and functionality. In this paper, we therefore discuss a
scheme to replicate scalable streaming contents in CDN. Figure 1
illustrates our CDN architecture, where different layers (quality)
of streaming media are stored in a group of content servers
according to stream/server popularity and server location. In this
paper, our work focuses on how to replicate different layers of
different streams into different content servers, in order to save
system resources and improve user response time simultaneously.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MIR ’03, November 7, 2003,Berkeley, California, USA
Copyright 2003 ACM 1-58113-778-8/03/00011…$5.00.

We firstly carry out theoretical analysis of storage cost, capacity
limit and access distribution of scalable video streaming. Based on
this analysis, we then propose a replication algorithm in which not

255

only popularities of streams and content servers but server
location are considered. Through simulations, we check the
performance of our proposal by changing related parameters.
Simulation results show that our proposal can efficiently minimize
user response time and network traffic. Our proposal is also stable
against varying conditions even if access patterns are dynamically
changed.
This paper is organized as follows: in Sect.2, related work with
regard to stream replication algorithms is reviewed. In Sect.3, an
overview of the proposed system architecture is provided, where
scalable streaming is applied to replicate streaming media over
CDN. Sect.4 presents the mathematical analysis of Web access,
server storage cost and capacity limit, then our proposed algorithm
is given later. Simulation results are given in Sect.5 and
conclusions are shown in Sect.6.

2. PREVIOUS WORK

We briefly discuss previous work as follows:
How to place replicas on multiple servers assuming a tree
topology (i.e. a root is an origin server) has been discussed in [13]
and [14]. Since the actual topology is not limited to be a tree,
these approaches are not necessarily suitable for CDN. In [15], the
authors presented an algorithm for placing replicas in a CDN.
However, they assumed that all replicas act independently and
cooperative schemes have not been studied.
In [12], replication decisions on a per-object granularity are
discussed. A useful cost model for replication is presented.
However, the replication object is just the normal Web object such
as HTML and image files. Since the video streaming has distinct
statistical properties and different user access patterns, their
strategy cannot be directly applied. Furthermore, they just
discussed relations between a given object and its related node.
How to reduce user response time based on relations among CDN-
nodes, nor how to efficiently replicate them among cooperative
content servers had not been considered.
There have been many other published studies on streaming media.
Sen et al showed that storing a prefix (i.e., the initial part) of a
stream at the proxy can hide the potentially large initial start-up
delays of work-ahead transmission schedule from the clients [16].
Lee et al proposed a scheme that provided users with “video
summary” (a number of key-frames) before they download
original stream files [17]. [8] and [18] studied distribution of
layered encoded video through caches, and [19] discussed how to
cache MPEG-2 video with a goal of video quality adjustment.
However, all of these researches focused on how to replace or
cache streaming contents in a single proxy cache. How to
efficiently replicate and distribute streaming contents in a group of
servers has not been mentioned.
We ourselves proposed an integrated pre-fetching and replacing
algorithm for the hierarchical (graceful) image based on a
cooperative proxy-server model, in which efficiency of
hierarchical image caching was proved [23]. We also presented a
scheme for stream caching by using hierarchically distributed
proxies with adaptive segments assignment, in which “segment”
meant a group of pictures [22]. This method clarified effectiveness
of “local-scope” server cooperation with per-segment

management. However, the former did not deal with scalable
(hierarchical) video streaming, and the latter left the “global-
scope” server cooperation for distributed streaming contents with
per-layer management, instead of per-segment management, as a
future work.

3. OVERVIEW OF CDN AND SCALABLE
STREAMING

3.1 Content Delivery Networks

With the growth in popularity of the Internet and the wide
availability of high-speed networks, Web content providers find
that it is difficult to serve all users with low response time,
especially in the face of high loads. In recent years, how to set up
contents distribution networks to efficiently distribute stored
information has become a major concern in the Internet.
In popular P2P networks, users can determine where different files
can be downloaded with the help of a directory service [5][6].
Similar ideas are expanded as the concept of “overlay network”
[9], where each connection in the overlay is mapped onto paths in
the underlying physical network.
Content delivery networks (CDNs) appeared recently and are
deploying quite rapidly [1]-[4]. Load balancing by request routing,
efficient content delivery by locating edge servers near to clients
and information exchange protocols among different CDN sites
are developed. However, their concern is mainly placed on
efficient delivery of static content, i.e. HTML files and images.
Some CDN companies advocate their streaming caching support,
but their technical details are not yet clarified nor verified.

3.2 Scalable Streaming

Researchers and engineers have argued that scalable (layered)
video streaming is appropriate for the Internet because of its better
flexibility and functionality [8]. Basically, scalable streaming
assumes scalable coding, in which the original signal is coded into
several layers, from the lowest (base) to highest (enhancement)
layers. This scalable coding is supported by some video
compression standards, such as H.263 and MPEG-2. MPEG-4
specifies an improved scalable coding method, referred as fine
granular scalability (FGS) [7]. Then, the scalable streaming
transmits each layer over different channels (different protocols,
different error correction codes, or different paths).
There are some advantages in this scalable streaming.
Quality adaptive
The compression ratio of the scalable streaming data can be easily
changed according to available bandwidth, e.g., when the network
congestion or delay get worsen, the sender can send few number
of layers to maintain the continuous playback at a receiver;
conversely the number of layers can be increased when network
conditions become better.
Save server resources

256

If we keep only some layers of the stream instead of the whole
original one in the content server when this stream is not popular,
then it can give other popular stream more space.

 (2)),,1(,,, IiSXB i
q j

jqijq Λ=≤⋅∑∑

In this paper, our goal is to choose an optimum parameter set
{Xi,q,j}in order to minimize user response time under this capacity
constraint of each server and the cost constraint of whole CDN
defined in next subsection.

Efficient for caching
More kinds of streaming data can be kept in a cache, when
necessary. Higher layers (enhancement layers) can be discarded
with keeping lower layers (base layers) instead of removing whole
data when there is no sufficient space in the cache.

4.2 Definition of Storage Cost
3.3 Scalable Streaming in CDN

We then consider a storage cost of streaming contents in a server,
which is associated with how much and how long the storage is
used (such a “storage utility” model is in fact being offered by
some companies, in which one can get storage whenever he needs
and pays only for what he uses). If we take into consideration the
cost of data redundancy for fault tolerance (e.g., by means of
mirroring or error checking/correcting overheads) and the cost of
server streams (which may be a function of the used storage), the
storage cost would be higher.

In this paper we discuss scalable streaming in CDN. In our system,
we assume the original streams are encoded into several layers
according hierarchical encoding format. The layered streams are
then replicated into content servers in CDN. When a client
requests one video stream, he can request either only base layers
or complete layers (consisting of base layers and enhancement
layers). The main work in this paper is to propose a hierarchical
replication algorithm to replicate different layers of different
streams into different servers in order to improve whole system
performance of CDN.

Let us calculate the storage cost when we store the q-th layer of
stream j in server i . We assume that each stream will be storaged
in the server for a fixed period, and then cached contents will be
updated periodically. Let Mi ($/byte) denote storage cost for a
given server i, and α represent a total expense limit of our CDN.
Then, we can get:

4. THEORETICAL ANALYSIS
 (3)),,1(,,, IiXBM

i q j
jqijqi Λ=≤⋅⋅∑∑∑ α

In this section, we give an analysis of replicating scalable
streaming media over the Content Delivery Network. Firstly, the
theory analysis of storage capacity, storage cost and average hop
count are presented from Sect.4.1 to Sect.4.3, respectively. Then,
based on the above results of theory analysis, How to reduce the
user response time under the same constraints is discussed in
Sect.4.4. The proposed replication algorithm is introduced in
Sect.4.5.Finally, how to reduce the computational complexity is
discussed in Sect.4.6.

A parameter Mi can be considered as a priority parameter (or
weighting factor) of each content server. Note that, though Eq.(3)
can be considered as generalization of storage capacity in Eq.(2),
it is evaluated for whole CDN, instead of each server.

4.3 Definition of Average Hop Count

4.1 Definition of Storage Capacity Let us define an average hop count Ti(X), that represents a
traverse of requests from server i to a server having a requested
content by

We assume that each content server is located in a different
administrative domain, such as autonomous system (AS). Let Si
(bytes) denote storage capacity of a server in domain i (i=1,…, I),
and λi (bytes/second) denote an aggregate request rate from clients
to the server. We assume that there are J streaming contents in our
CDN, and each content is encoded by Q layers. Let us define a
parameter Bq,j as data size of the q-th layer (q=1,…,Q) of stream j
(j=1,…, J), and define a parameter Pq,j as a request probability for
the q-th layer of stream j (i.e. stream popularity), respectively. We
define a parameter Xi,q,j, which takes a binary value of

∑ ∑ ⋅=
q j

jqsijqi DPT)()(),(,, XX (4)

where a parameter Di,s(q,j)(X) denotes the shortest distance (hop
count) from domain i to server s(q, j) storing the q-th layer of
stream j under the placement X. This nearest copy is stored either
in an origin server of the stream or in other servers where the layer
has been replicated. We assume that clients are always redirected
to the nearest copy (i.e. the optimum server) by some “request
routing” mechanisms, though their details are out of scope of this
paper. Note also that a parameter Di,s(q,j)(X) may deonote other
QoS parameters such as delays and throughputs.

Xi,q,j = 1 (if the q-th layer of stream j is stored in server i),
Xi,q,j = 0 (otherwise). (1) Let be the total request rate from all the domains.

Let T(X) be the average number of hops from all the domains
weighted by “server popularity” λ . This is given by

∑=Λ
i

iλ

Λ/i

We also define a three-dimensional matrix X of which element is
Xi,q,j, that represents a placement pattern of streaming contents.
Storage capacity Si is then constrained by defined parameters,

257

1) For a given streaming content with layered representation (the
q-th layer of stream j), ∆Ti,q,j in Eq.(7) is calculated. This is also
provided to each content server as a “replication priority”.

∑∑∑ ⋅=
i q

jqsi
j

jqi DS)(),(,,, X

 (5)

jq
i

jqi PS ,,, ⋅
Λ

=
λ

∑∑∑

∑

Λ
=

Λ
=

i q
jqsi

i
ii

D

T

)(1

)(1)

),(, X

Xλ

⋅
j

jqi P ,λ

T (X

2) A “layer-server pair” which has the highest ∆Ti,q,j is picked up
and a layer (q, j) is stored in server i. This action results in a new
placement X. ∆Ti,q,j is recalculated under this new placement and a
new layer-server pair with the highest ∆Ti,q,j is selected.

where 3) The above process is iteratively carried out until either server
capacity constraint in Eq.(2) or storage cost constraint in Eq.(3)
exceeds its limit. . (6)
Here, we give some explanation about our algorithm. Because the
replication priority ∆Ti,q,j represents how many hop counts can be
reduced after storing a layer in a server, the average hop count can
be minimized if we decide the replication order according to
Eq.(7). Because the system selects the layer-server pair under the
constraint of storage capacity and storage cost, higher priority
layers of streams will be firstly stored. Higher priority servers will
be also given a priority to store layers. When the constraint
exceeds the limit, content replication will be stopped. At that time,
for a given streaming content, how many layers should be
replicated and how many content servers should be selected are
decided simultaneously.

Eq.(6) represents a request probability weighted by aggregation
ratio to server i (i.e. joint probability of stream popularity and
server popularity). Here, the placement X should be subjected to
two constraints. One constraint is capacity limitation specified in
Eq.(2), and another constraint is storage cost defined in Eq.(3).

4.4 Minimization of Traversed Hop Count

An average hop count that a request must traverse almost reflects
the download time of an object and can be used as an indicator of
user perceived latency. Some papers utilize this traversed hop
count as an important and stable criterion to evaluate the
performance of CDN or P2P networks [6] [14]. In this paper, our
goal is to optimally choose the Xi,q,j to provide requested streams
to clients as quickly as possible under the constraints of node
capacity and storage cost. For these constraints, we already
formulated Eq.(2) and Eq.(3). Then, the main problem is how to
actually reduce hop counts under these constraints.

4.6 Consideration on Computational
Complexity

If the q-th layer of stream j is replicated in server i, we can obtain
the averagely reduced hop count ∆Ti,q,j as follows:

{ }∑ −⋅⋅⋅
∆

=∆
k

ikojqokkjqjqi DDPT)()(1
,),(,,,, XXλ

•

•

Computational complexity of our replication algorithm mainly
depends on the size of three-dimensional matrix X, that is given
by I×Q×J. Therefore, when there are numerous streams in a server
(when J is large), it is unrealistic to manage all streams’
replication to other servers. Also, since the scale of CDN is being
increased recently (since I becomes larger), to manage all content
servers’ replication will cause a great amount of computational
complexity in our CDN.

, (7)

where X0 is an initial placement of streaming contents, in which
all the streams are stored in their origin servers only, that are
denoted by o(q, j), and X is their current placement after keeping a
replica of the q-th layer of stream j into server i. A parameter
Dk,o(q,j)(X0) represents the shortest distance from server k to the
origin server o(q, j) under placement X0, and a parameter Dk,i(X)
does the shortest distance from server k to server i having
replication under placement X, respectively. The proof of Eq.(7) is
given in Appendix.

Fortunately, previous researches showed that the distribution of
web requests from a fixed group of users follows a Zipf-like
distribution. It has been proved that most web requests to a server
are for a very small set of objects, for example top 10 %. Because
of this property, it is enough to only manage the aforesaid set of
streams. Other recent studies also showed that client load is
heavily skewed towards popular servers. In [1], it had been found
that 80% of the requests to streaming media were served by only
top 4% most popular servers. Therefore, to reduce computation
complexity of our CDN, it is suggested that we only need to care
about popular servers and popular streams.

4.5 Proposed Algorithm Let Fi and Fj represent access frequency of server i and stream j in
last period, respectively. Then we apply

Here, we present a replication algorithm to resolve following three
problems: (1) How do we decide a replication priority of each
streaming content which needs to be replicated? (2) How many
servers should be selected to replicate a given streaming content?
(3) For a given streaming content, how many layers should be
selected for it to be replicated? We fomulated these problems into
an optimization problem: under the constraint of Eq.(2) and Eq.(3),
minimize the averaged hop count of Eq.(7). To solve this, we give
an iterative algorithm as follows.

If Fi or Fj exceeds a pre-specified threshold, the system will
execute the iterative replication algorithm (matrix
operation) for the coming period.

If not, the system just keeps access records and does not
carry out any calculation.

The threshold is an access frequency of the stream (or the server)
of which ranking is Top 10, for example. Accordingly, the system

258

only needs to manage a very small set of streams and servers,
leading to reduction of computation complexity.

5. PERFORMANCE EVALUATION

In this section numerical results will be presented by simulation
experiments to validate the proposed algorithm.

5.1 Simulation Conditions

In simulation experiments, we assume following conditions as an
example. There are 21 nodes (servers) in our network simulator.
Among these nodes, there are 15 original servers and 6 content
cache servers, respectively. Physical distances among nodes are
decided at random. As for the streaming contents, there are 1000
different streams with the rate of 384kbps. The length of each
stream is uniformly distributed from one minute to ten minutes.
Each stream is encoded into 2 constant bit rate layers [3]. In our
simulation, clients often stop watching a streaming content after
playback. The position where a client stops watching a stream is
decided at random. Several researchers have observed that the
distribution of web request from a fixed group of users follows a
Zipf distribution, which states that the relative probability of a
request for the i'th most popular page is proportional to Ώ/ri

α.
Besides, the value of α , a parameter of Zipf distribution, varies
from trace to trace, ranging from 0.64 to 0.83 [20][21]. Client
requests arrive according to a Poisson process. For each stream, a
client requests either a base layer only or a complete video
consisting of a base layer and an enhancement layer. All clients
are always redirected to the closest server without failure of
request routing. The total request times in the simulations are
10000.

There are four replication algorithms we will study:

•

•

•

•

LRU (Least Recently Used) Policy

LFU (Least Frequently Used) Policy

Hierarchical Caching [12]

Proposal

The former two are conventional ones, in which we assigned LRU
or LFU to one whole stream, corresponding to conventional CDN.
Note that LRU and LFU can also be utilized for other content
management such as cache replacement. The Hierarchical
Caching [12], which can be used for scalable stream replication,
was firstly proposed for hierarchical image databases. The original
idea of this algorithm is to store the most accessed layer of
different images (streams) in a cache server based on client’s
different access patterns. Then, we compared these four
algorithms.

5.2 Simulation Results

In Figure 1, average hop counts are used to evaluate system
performance. We define the average hop counts as a ratio of the

number of traversed hop counts to the number of total request
times. Average hop counts reflect content delivery time and thus
can be used as an indicator of user perceived latency.
From this figure, we can find that the proposed algorithm achieved
the fewest hop counts than the other ones. Although the
Hierarchical Caching shows better performance than LRU and
LFU, its hop counts are still fewer than our proposal because it
doesn’t exploit server location (hop counts between servers). We
can also find that the proposed method substantially reduces the
average hop counts by almost 50% compared with LFU. The
reason is because the proposal decides whether a layer of one
stream should be replicated in a content server by considering
many aspects such as server popularity, stream request frequency
(stream popularity) and server location (hop counts). However,
LFU only considers stream request frequency. This reason also
results in an effective utilization of system resources when the
parameter of Zipf distribution is increased. For our proposal, the
number of hop counts keeps being decreased with the parameter
of Zipf distribution increased.
In Figure 2, since network traffic reflects bandwidth consumption
and transmission cost, which is related to user perceived latency,
we evaluate the effect of network traffic among different servers
when the parameter of Zipf distribution is changed. From this
figure, we can find that the proposed algorithm performs best and
reduces network traffic most since this algorithm takes both
content popularity and server location into consideration. It also
verifies that algorithms with low hop counts lead to reduction of
network traffics.
In Figure 4, a hit ratio is shown with respect to the parameter of
Zipf distribution. We define the hit ratio in CDN as a usual
manner; when a client requests a content and the content is
available in a server which is located near to the client, this client
needs not to wait for the requested content to be delivered from
the original server, so called a hit. Under this measure, the
proposed algorithm also performs best against the other three
methods; LRU, LFU and Hierarchical Caching.

Fig. 1: Average As Hops under Different Zipf Parameters

259

Fig. 2: Network Traffic under Different Zipf Parameters

Fig. 3: Hit Ratio under Different Zipf Parameters

In conclusions from these figures, it is proved that the proposed
algorithm achieves the best performance under various measures;
hop counts, network traffic and cache hit ratio.

6. CONCLUSIONS

This paper discussed how to optimally replicate scalable
streaming contents onto CDN servers and presented an efficient
scheme to replicate them without wasting content servers’
resources. Based on mathematical analysis, we proposed a novel
algorithm to minimize average hop counts over traversed domains
where the scalable streams are delivered. Our proposal dealt with
not only popularities of streams and servers but also server
location. We then compared our proposal with other conventional
methods using computer simulations. Simulation results showed
that the proposed method substantially reduced average number of
hop counts by 50% compared with the conventional ones. The
network traffic could be also efficiently reduced at the same time.
It was also verified that our proposal was robust against varying
conditions even if client access patterns are dynamically changed.
There are a number of works to be done as further researches.
Precise design of control packets exchanged among servers and its
quantitative overhead evaluation should be carried out from the
practical viewpoint. Furthermore, theoretical modeling and

replication algorithms should be expanded and sophisticated, in
order to lead us to a new content delivery paradigm including P2P
(peer-to-peer) architecture, multicasting (IP-multicast and
application-layer multicast) and multiple description coding
instead of layered coding.

Appendix

In this appendix, we give a mathematical formulation of Eq.(7).
Firstly, assume that the q-th layer of stream j is originally stored in
server o(q, j). When a client sends a request for this layer (q, j) to
server o(q, j) via a certain server k, the hop counts during the
delivery from server k to server o(q, j) is given by

)(1)(0),(,,0,),,(, XX jqokjqkjqjqok DPT ⋅⋅
Λ

= λ (A-1)

which is an element of Eq.(5) when X = X0. Dk,o(q,j)(X0) is the
shortest distance from server k to server o(q, j) under the initial
placement pattern X0 (no cache) and Λ is the total

request rate from all the domains. This sums up to the total hop
counts of requests to the q-th layer of stream j from all servers,
given by

∑=
i

iλ

)(1)()(0),(,,0,),,(,0,),,(XXX jqok
k

jqk
k

jqjqokjqjqo DPTT ∑∑ ⋅⋅
Λ

== λ (A-2)

Similarly, when the layer (q, j) is replicated onto a certain content
server i which is not its original server, the total hop counts to
layer (q, j) is given by

)(1)(,,,, XX ik
k

jqkjqi DPT ∑ ⋅⋅
Λ

= λ (A-3)

where X is the placement pattern after replication to the content
server i. Dk,i(X) means the shortest distance from server k to server
i under the placement pattern X. Finally, we can calculate the
reduced hop counts (i.e. replication priority) ∆Ti,q,j by taking a
difference of Eq.(A-2) and Eq.(A-3), then Eq.(7) is achieved.

7. REFERENCES

[1] J.Kangasharju and K.W. Ross,” Performance Evaluation of
Redirection Schemes in Content Distribution Networks”, The
5th International Web Caching and Content Delivery
Workshop, May 2000.

[2] A.Beck and M. Hofmann, “Enabling the Internet to Delivery
Content-Oriented Services” Proc. The 6th International Web
Caching and Content Distribution, Boston, USA Jun 2001.

[3] Adero, <URL: http: www. adero. com>

[4] Akamai, <URL: http: www. akamai. com>

[5] Napster, < URL: http://www.napster.com>

[6] L. Gao, “On Inferring Automonous System Relationships in
the Internet ’’ IEEE Global Internet, 2002, Nov.

260

[7] H M. Radha, M.V.D. Schaar, and Y. Chen, “The MPEG-4
Fine Grained Scalable Video Coding Method for Multimedia
Streaming Over IP ”, IEEE Trans. Multimedia Vol.3, No.1,
pp.53-67, March 2001.

[8] J.Kangasharju, F.Hartanto, M.Reisslein, K.W. Ross,
“Distributing Layered Encoded Video through Caches”,
IEEE Transactions on Computers, vol. 51, n. 6, pp. 622-636,
June 2002.

[9] J.Byers, J.Considine, and M.Mitzenmacher "Informed
Content Delivery Across Adaptive Overlay Networks"_
SIGCOMM 2002, Pittsburgh, PA, Aug.2002.

[10] M. Chesire, A. Wolman, G.M.Voelker, and H.M.Levy,
“Measurement and Analysis of a Stream Media Workload”,
USITIS’01, San Francisco, CA, Mar.2001.

[11] S. Acharya and B. Smith and P. Parnes, “Characterizing User
Access To Videos on the Videos On the World Wide Web’’
SPIE/ACM MMCN 2000, San Jose, CA, Jan 2000.

[12] J.Kangasharju, J.Roberts, K.W.Ross, “Object replication
strategies in Content Distribution Networks”, Computer
Communications, 25 2002

[13] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of
electronic content. In Proceedings of IEEE Infocom,
Anchorage, AK, April 22{26, 2001. 609} P. Krishnan, D.
Raz, and Y. Shavitt. The cache location problem. IEEE/ACM
Transactions on Networking, pp 568-582, October 2000.

[14] B. Li, M. J. Golin, G. F. Italiano, and X. Deng. On the
optimal placement of web proxies in the internet. In
Proceedings of IEEE Infocom, New York, NY, pp 21-25,
March 1999.

[15] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the
placement of web server replicas. In Proceedings of IEEE
Infocom, Anchorage, AK, pp 22-26, April 2001.

[16] S.Sen, J.Rexford,and D.Towsley, ” Proxy Prefix Caching for
Multimedia Streams,” IEEE INFOCOM99, N.Y, Mar.1999.

[17] Sung-Ju Lee, Wei-Ying Ma, and Bo Shen
”An Interactive Video Delivery and Caching System Using
Video Summarization”, WCW2001, Boston, MA, June 2001

[18] R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia
proxy caching mechanism for quality adaptive streaming
applications in the Internet,” IEEE INFOCOM 2000, March
2000.

[19] M.Sasabe, N.Wakamiya, M.Murata, and H.Miyahara, "Proxy
caching mechanisms with video quality adjustment", SPIE
ITCom Feb. 2001.

[20] L. Breslao, P. Cao, L. Fan, G. Phillips, and S. Shenker “Web
Caching and Zip-like Distributions: Evidence and
Implications” Proc. IEEE INFOCOM’99, New York, April,
1999.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, "On
the Implications of Zipf's Law for Web Caching", In 3rd
International WWW Caching Workshop, June 1998.

[22] Z.Su, J.Katto, T.Nishikawa, M.Murakami and Y.Yasuda,
“Stream Caching Using Hierarchically Distributed Proxies
with Adaptive Segments Assignment”, IEICE Trans on
Commun, Vol.E86-B, No.6, Jun. 2003, pp 1859-1869

[23] Z.Su, T.Washizawa, J.Katto, and Y.Yasuda, “Integrated Pre-
fetching and Caching Algorithm for Graceful Image
Caching”, IEICE Trans on Commun, Vol.E86-B, No.9, Sep.
2003, pp 2753-2763

[24] Q.Lv, P.Cao, E.Cohen, K.Li, S.Shenker: “Search and
Replication in Unstructured Peer-to-Peer Networks”. ICS
2002

261

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lv:Qin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cohen:Edith.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Kai.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shenker:Scott.html
http://www.informatik.uni-trier.de/~ley/db/conf/ics/ics2002.html
http://www.informatik.uni-trier.de/~ley/db/conf/ics/ics2002.html

