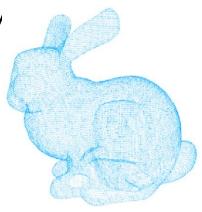
Introduction to Katto Lab Network Group

Katto Laboratory, Department of Communications and Computer Engineering, Faculty of Science and Engineering, WASEDA University

About Network Area

— Main research Area —

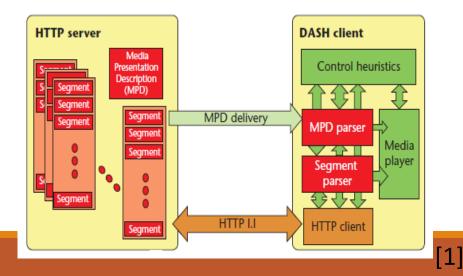
- ✓ Point Cloud Steaming
- ✓ Point Cloud Compression
- ✓ Video Streaming
- ✓ Information Oriented Network
- ✓ Hart Rate Estimation


-Recent Key Word-

Point Cloud Compression, Point Cloud Streaming, Point Cloud Classification, Point Cloud Object Detection, Indoor Location estimation, PointNet, Hololens, Lidar, Unity, 360-degree streaming, MPEG-DASH, AR, VR, Hart Rate estimation, IoT etc...

Point Cloud

- What is point cloud
 - Point cloud refers to data composed of a collection of points
 - 3D data with basic positional information in X, Y, Z and color
- What point cloud can do?
 - Wide area surveying combined with drones and other equipment is possible.
 - Easy to understand visually due to its three-dimensionality
 - Simulations can be performed using 3D models.



What is Video Streaming?

-Streaming using HTTP is common

- HTTP Live Streaming
- MPEG-DASH
- MPEG-DASH[1]
 - Encode a single video content at different bitrates
 - Divide into segments

- Change the bit rate of the delivered video to reduce video interruptions

[1] "The MPEG-DASH Standard for multimedia streaming over the internet", Anthony Vetro, Mitsubishi Electric Research Labs.

What is IoT?

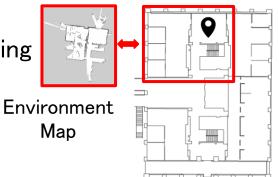
Internet of Things : Connecting things to the Internet and exchange information

✓ Using cloud computing and mobile networks

✓ It has many issues such as security, network configuration, and power

Application	 Perform various tasks such as anomaly detection
Cloud Computing	 Data storage, analysis, visualization
Wireless Sensor Networks	 Data collection and transmission

Ex1:Indoor of moving objects using LiDAR Location Estimation


• LiDAR Sensor

Measures distance to an object by emitting a laser beam and measuring the time of flight until the reflected light returns.

Indooe Location estimation

1 Creation of environmental maps from LiDAR data and odometry information

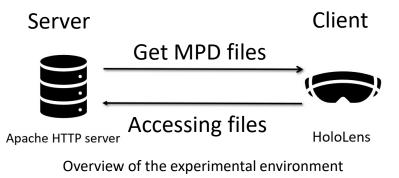
(2) Estimates current location by checking against building plans, etc.

Building Drawings

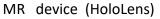


Ex2: Evaluation of live video distribution characteristics on MR devices

•MR(Mixed Reality)

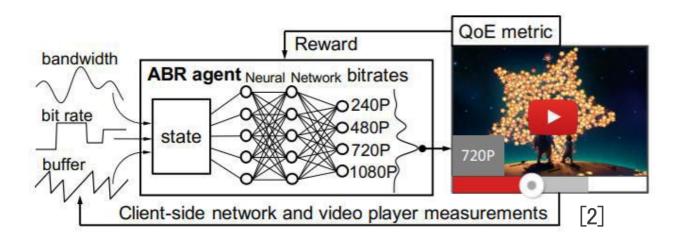

: Integrate AR and VR

Adaptive control with MPEG-DASH



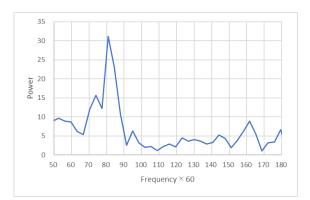
Conceptual diagram of a meeting utilizing MR applications

- Live 360-degree video streaming
- QoS, QoE Evaluation



Ex3: Video Streaming control using reinforcement learning

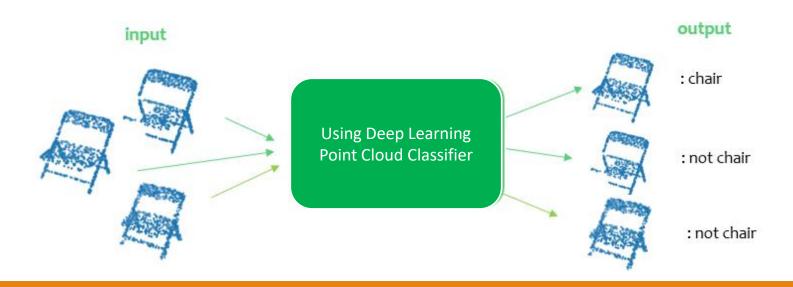
- Android application to collect communication quality data
- Learning efficient video distribution control using reinforcement learning based on collected data
- Implementation of video delivery control using reinforcement learning in a real environment


Ex4:Evaluation of the accuracy of non-contact heart rate estimation using video images

Detects faces from video images and sets a region of interest (ROI)

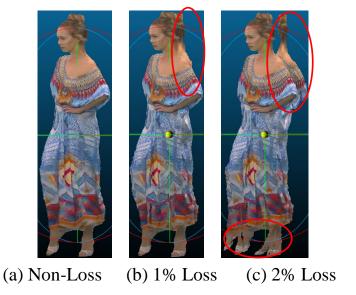
➢ Flow of heart rate estimation

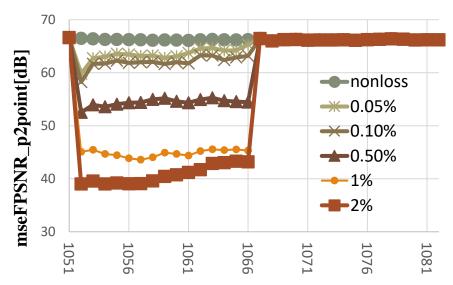
- Example of accuracy evaluation
- Evaluation of the effect of the environment at the time of video capture on estimation accuracy
 - > Angle of face, angle of camera
 - Facial movement
 - Assessing the impact of data used for estimation on estimation accuracy
 - Combination of each RGB channel to be used
 - ROI Location
 - Image compression



Heart Rate Estimate

80.9


Ex5: Classification of Point Cloud Data Using Deep Learning


- Point Cloud Data
 - A Collection of 3D points (with geometry and image infomation) that represent 3D contents
 - Autonomous car, digital twin, AR/VR etc.
 - Investigation of a learning method that enables classification of incomplete data (data with noise and occlusion) from actual sensors.
 → Evaluation of classification accuracy by applying various processing to training data

Ex6: Evaluation of packet loss in real-time Point Cloud Streaming and Error Concealment

- Point Cloud: Remote Conference VR/AR.
- Packet losses in streaming of point cloud impact reconstruction quality. →Error Concealment Technology

Frame Number Example of PSNR Variation Due to Error Propagation Caused by Packet Loss

Example of reconstructed point cloud with error

Ex7: 3D Point Cloud & AI for safe autonomous driving

- Fast Object Detection Without 3D CNN Using PointPillars
- Missing Small and Distant Objects Remains a Challenge
- •New Activation Functions "βMish & SGSmeLU" Capture Even Small Features
 - Experiments Confirmed Performance Beyond the Baseline, Aiming for Safer Autonomous Driving.

Computational Efficiency and Comparisons with Other Methods for Practical Deployment.

Let's study together in the network group!

✓ Examples of Recent Research Themes in the NW Field

- ✓ Evaluation of packet loss in real time 3D point cloud streaming
- Improvement of the 3D point cloud object detection method PointPillars using activation functions and Transformers
- ✓ Evaluation of the accuracy of point cloud by Generative AI
- \checkmark Characterization of live distribution of video in MR devices
- ✓ Evaluation of non-contact heart rate estimation accuracy in various situations
- ✓ Examination of adaptive rate control method using Q learning
- \checkmark Characterization of live distribution of video in MR devices
- ✓ Evaluation of non-contact heart rate estimation accuracy in various situations
- ✓ Efficient transfer method of sensor information using ICN and its evaluation
- Evaluation of the accuracy of extended methods that take occlusion into account point cloud classification models